OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3567–3575

Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing

Tuomo von Lerber and Markus W. Sigrist  »View Author Affiliations

Applied Optics, Vol. 41, Issue 18, pp. 3567-3575 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel measurement principle for fiber-optic sensing is presented. Use of a cavity-ring-down scheme enables measurements of minute optical losses in high-finesse fiber-optic cavities. The loss may be induced by evanescent-field absorption, fiber bending, fiber degradation, Bragg gratings, or any other effect that might change the fiber transmission or cavity reflector properties. The principle is proved to be rather insensitive to ambient perturbations such as temperature changes. A high-sensitivity measurement of loss due to bending is presented as a proof-of-principle. With a cavity finesse of 627 a sensitivity for induced loss of 108 ppm (4.68 × 10-4 dB) is achieved. Preliminary measurements of evanescent-field absorption are also discussed.

© 2002 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.5750) Optical devices : Resonators

Original Manuscript: September 5, 2001
Revised Manuscript: March 8, 2002
Published: June 20, 2002

Tuomo von Lerber and Markus W. Sigrist, "Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing," Appl. Opt. 41, 3567-3575 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Uenten, D. S. Urevig, D. J. Spencer, D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980). [CrossRef] [PubMed]
  2. D. Z. Anderson, J. C. Frisch, C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef] [PubMed]
  3. D. Z. Anderson, “Reflectometer based on optical cavity decay time,” U.S. patent4,571,085 (18February1986).
  4. P. R. Morkel, M. C. Farries, D. N. Payne, “Losses in fiber laser cavities,” Electron. Lett. 24, 92–93 (1988). [CrossRef]
  5. A. O’Keefe, D. A. G. Deacon, “Cavity-ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  6. G. Berden, R. Peeters, G. Meijer, “Cavity-ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  7. A. D. Kersey, “A review of recent developments in fiber-optic sensor technology,” Opt. Fiber Technol.: Mater. Devices Syst. 2, 291–317 (1996). [CrossRef]
  8. E. J. Friebele, M. A. Putnam, H. J. Patrick, A. D. Kersey, A. S. Greenblatt, G. P. Ruthven, H. Krim, K. S. Gottschalck, “Ultrahigh-sensitivity fiber-optic strain and temperature sensor,” Opt. Lett. 23, 222–224 (1998). [CrossRef]
  9. R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase-shift cavity-ring-down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996). [CrossRef]
  10. L. G. Falco, O. M. Parriaux, “Optical fiber detection system using an intensity-modulating sensor,” U.S. patent4,887,901 (19December1989).
  11. G. Kotrotsios, L. Falco, J. P. Jeanneret, O. Parriaux, “Radio frequency phase detection for intensity modulated fiber sensors,” in Fiber Optic Sensors I, H. J. Arditti, L. B. Jeunhomme, eds., Proc. SPIE586, 99–103 (1985). [CrossRef]
  12. G. Stewart, K. Atherton, H. Yu, B. Culshaw, “An investigation of an optical fiber amplifier loop for intracavity and ring-down-cavity loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001). [CrossRef]
  13. T. von Lerber, A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application EP00121314.9 (9October2000).
  14. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity-ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998). [CrossRef]
  15. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity-ring-down laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997). [CrossRef] [PubMed]
  16. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “Continuous-wave cavity-ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  17. B. A. Paldus, J. S. Harris, J. Martin, J. Xie, R. N. Zare, “Laser diode cavity-ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997). [CrossRef]
  18. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H. W. Lee, “Cavity-ring-down spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1866 (1999). [CrossRef]
  19. K. An, C. Yang, R. R. Dasari, M. S. Feld, “Cavity-ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995). [CrossRef]
  20. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, R. N. Zare, M. J. Lawrence, R. L. Byer, “Frequency-switched heterodyne cavity-ring-down spectroscopy,” Opt. Lett. 25, 920–922 (2000). [CrossRef]
  21. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998). [CrossRef]
  22. K. K. Lehmann, D. Romanini, “The superposition principle and cavity-ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996). [CrossRef]
  23. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996). [CrossRef]
  24. P. Zalicki, R. N. Zare, “Cavity-ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  25. Y. Zhu, E. Simova, P. Berini, C. Grover, “A comparison of wavelength-dependent polarization-dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49, 1231–1239 (2000). [CrossRef]
  26. W. Gamblin, H. Matsumura, C. Ragdale, “Curvature andmicrobending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979). [CrossRef]
  27. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity-ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998). [CrossRef]
  28. Corning, “SMF-28 Product Information Sheet,” (One Riverfront Plaza, Corning, N.Y. 14831, 2001).
  29. T. von Lerber, M. W. Sigrist, “Time constant extraction from noisy cavity-ring-down signals,” Chem. Phys. Lett. 353, 131–137 (2002). [CrossRef]
  30. N. Hodgson, H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, London, 1997).
  31. D. M. Wieliczka, S. Weng, M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989). [CrossRef] [PubMed]
  32. R. Engeln, G. Berden, E. van den Berg, G. Meijer, “Polarization-dependent cavity-ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited