OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3567–3575

Cavity-Ring-Down Principle for Fiber-Optic Resonators: Experimental Realization of Bending Loss and Evanescent-Field Sensing

Tuomo von Lerber and Markus W. Sigrist  »View Author Affiliations


Applied Optics, Vol. 41, Issue 18, pp. 3567-3575 (2002)
http://dx.doi.org/10.1364/AO.41.003567


View Full Text Article

Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel measurement principle for fiber-optic sensing is presented. Use of a cavity-ring-down scheme enables measurements of minute optical losses in high-finesse fiber-optic cavities. The loss may be induced by evanescent-field absorption, fiber bending, fiber degradation, Bragg gratings, or any other effect that might change the fiber transmission or cavity reflector properties. The principle is proved to be rather insensitive to ambient perturbations such as temperature changes. A high-sensitivity measurement of loss due to bending is presented as a proof-of-principle. With a cavity finesse of 627 a sensitivity for induced loss of 108 ppm (4.68 × 10−4 dB) is achieved. Preliminary measurements of evanescent-field absorption are also discussed.

© 2002 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.5750) Optical devices : Resonators
(260.1440) Physical optics : Birefringence

Citation
Tuomo von Lerber and Markus W. Sigrist, "Cavity-Ring-Down Principle for Fiber-Optic Resonators: Experimental Realization of Bending Loss and Evanescent-Field Sensing," Appl. Opt. 41, 3567-3575 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-18-3567


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Uenten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980).
  2. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
  3. D. Z. Anderson, “Reflectometer based on optical cavity decay time,” U.S. patent 4,571,085 (18 February 1986).
  4. P. R. Morkel, M. C. Farries, and D. N. Payne, “Losses in fiber laser cavities,” Electron. Lett. 24, 92–93 (1988).
  5. A. O’Keefe and D. A. G. Deacon, “Cavity-ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
  6. G. Berden, R. Peeters, and G. Meijer, “Cavity-ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
  7. A. D. Kersey, “A review of recent developments in fiber-optic sensor technology,” Opt. Fiber Technol.: Mater. Devices Syst. 2, 291–317 (1996).
  8. E. J. Friebele, M. A. Putnam, H. J. Patrick, A. D. Kersey, A. S. Greenblatt, G. P. Ruthven, H. Krim, and K. S. Gottschalck, “Ultrahigh-sensitivity fiber-optic strain and temperature sensor,” Opt. Lett. 23, 222–224 (1998).
  9. R. Engeln, G. von Helden, G. Berden, and G. Meijer, “Phase-shift cavity-ring-down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
  10. L. G. Falco and O. M. Parriaux, “Optical fiber detection system using an intensity-modulating sensor,” U.S. patent 4,887,901 (19 December 1989).
  11. G. Kotrotsios, L. Falco, J. P. Jeanneret, and O. Parriaux, “Radio frequency phase detection for intensity modulated fiber sensors,” in Fiber Optic Sensors I, H. J. Arditti and L. B. Jeunhomme, eds., Proc. SPIE 586, 99–103 (1985).
  12. G. Stewart, K. Atherton, H. Yu, and B. Culshaw, “An investigation of an optical fiber amplifier loop for intracavity and ring-down-cavity loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001).
  13. T. von Lerber and A. Romann, “A method for measuring at least one physical parameter using an optical resonator,” European patent application EP00121314.9 (9 October 2000).
  14. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, “Cavity-ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
  15. J. J. Scherer, J. B. Paul, A. O’Keefe, and R. J. Saykally, “Cavity-ring-down laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
  16. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “Continuous-wave cavity-ring-down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
  17. B. A. Paldus, J. S. Harris, Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity-ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199–3204 (1997).
  18. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H. W. Lee, “Cavity-ring-down spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859–1866 (1999).
  19. K. An, C. Yang, R. R. Dasari, and M. S. Feld, “Cavity-ring-down technique and its application to the measurement of ultraslow velocities,” Opt. Lett. 20, 1068–1070 (1995).
  20. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, R. N. Zare, M. J. Lawrence, and R. L. Byer, “Frequency-switched heterodyne cavity-ring-down spectroscopy,” Opt. Lett. 25, 920–922 (2000).
  21. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
  22. K. K. Lehmann and D. Romanini, “The superposition principle and cavity-ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996).
  23. J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
  24. P. Zalicki and R. N. Zare, “Cavity-ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
  25. Y. Zhu, E. Simova, P. Berini, and C. Grover, “A comparison of wavelength-dependent polarization-dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49, 1231–1239 (2000).
  26. W. Gamblin, H. Matsumura, and C. Ragdale, “Curvature andmicrobending losses in single-mode optical fibers,” Opt. Quantum Electron. 11, 43–59 (1979).
  27. K. J. Schulz and W. R. Simpson, “Frequency-matched cavity-ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
  28. Corning, “SMF-28 Product Information Sheet,” (One Riverfront Plaza, Corning, N.Y. 14831, 2001).
  29. T. von Lerber and M. W. Sigrist, “Time constant extraction from noisy cavity-ring-down signals,” Chem. Phys. Lett. 353, 131–137 (2002).
  30. N. Hodgson and H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, London, 1997).
  31. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbent liquids: infrared optical constants of water,” Appl. Opt. 28, 1714–1719 (1989).
  32. R. Engeln, G. Berden, E. van den Berg, and G. Meijer, “Polarization-dependent cavity-ring-down spectroscopy,” J. Chem. Phys. 107, 4458–4467 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited