OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 18 — Jun. 20, 2002
  • pp: 3628–3633

Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers

Stavros G. Demos, Mike Staggs, and Mark R. Kozlowski  »View Author Affiliations


Applied Optics, Vol. 41, Issue 18, pp. 3628-3633 (2002)
http://dx.doi.org/10.1364/AO.41.003628


View Full Text Article

Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Damage growth in optical materials used in large-aperture laser systems is an issue of great importance to determine component lifetime and therefore cost of operation. Small size damage sites tend to grow when exposed to subsequent high-power laser irradiation at 355 nm. An understanding of the photophysical processes associated with damage growth is important to devise mitigation techniques. We examine the role of laser-modified material and cracks formed in the crater of damage pits in the damage growth process using fused-silica and deuterated KDP samples. Experimental results indicate that both of the above-mentioned features can initiate plasma formation at fluences as low as 2 J/cm2. The intensity of the recorded plasma emission remains low for fluences up to approximately 5 J/cm2 but rapidly increases thereafter, accompanied by an increase of the size of the damage crater.

© 2002 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3330) Lasers and laser optics : Laser damage
(140.3380) Lasers and laser optics : Laser materials

Citation
Stavros G. Demos, Mike Staggs, and Mark R. Kozlowski, "Investigation of Processes Leading to Damage Growth in Optical Materials for Large-Aperture Lasers," Appl. Opt. 41, 3628-3633 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-18-3628


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. Bloembergen, “Laser induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
  2. W. L. Smith, “Laser induced breakdown in optical materials,” Opt. Eng. 17, 489–503 (1978).
  3. S. C. Jones, P. Braunlich, R. T. Casper, and X. A. Shen, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
  4. L. L. Chase, “Laser ablation and optical surface damage,” in Laser Ablation, Vol. 28 of Springer Series in Material Science, J. C. Miller, ed. (Springer-Verlag, Berlin, 1994).
  5. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
  6. P. Braunlich, S. C. Jones, X. A. Shen, and R. T. Casper, “Laser-induced modifications and the mechanism of intrinsic damage in wide-gap optical materials,” Nucl. Instrum. Methods Phys. Res. B 46, 224–230 (1990).
  7. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
  8. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999).
  9. S. G. Demos and M. Staggs, “Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,” Appl. Opt. 41, 1977–1983 (2001).
  10. S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M. R. Kozlowski, M. Staggs, and H. B. Radousky, “Surface defect generation in optical materials under high fluence laser irradiation in vacuum,” Electron. Lett. 36, 566–567 (2000).
  11. D. Ehrt, P. Ebeling, and U. Natura, “UV transmission and radiation-induced defects in phosphate and fluoride-phosphate glasses,” J. Non-Cryst. Solids. 263, 240–250 (2000).
  12. N. P. Zaitseva, J. J. De Yoreo, M. R. Dehaven, R. L. Vital, K. E. Montgomery, M. Richardson, and L. J. Atherton, “Rapid growth of large-scale (40–55 cm) KH2PO4 crystals,” J. Crystal Growth 180, 255–262 (1997).
  13. K. Fujioka, S. Matsuo, T. Kanabe, H. Fujita, and M. Nakatsuka, “Optical properties of rapidly grown KDP crystal improved by thermal conditioning,” J. Crystal Growth 181, 265–271 (1997).
  14. E. M. Campbell, “The National-Ignition-Facility project,” Fusion Technol. 26, 755–766 (1994).
  15. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, and P. J. Wegner, “Growth of laser-initiated damage in fused silica at 351 nm,” in Laser-Induced Damage in Optical Materials: 2000, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 4347, 468 (2000).
  16. M. R. Kozlowski, C. L. Battersby, and S. G. Demos, “Luminescence investigation of SiO2 surfaces damaged by 0.35-mm laser illumination,” in Laser-Induced Damage in Optical Materials: 1999, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3902, 138–143 (1999).
  17. S. G. Demos, M. Staggs, and H. B. Radousky, “Laser-induced material modification in the bulk KDP crystals,” in Laser-Induced Damage in Optical Materials: 1999, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. soileau, eds., Proc. SPIE 3902, 428–432 (1999).
  18. F.Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
  19. G. Hammersley, L. A. Hackel, and F. Harris, “Surface prestressing to improve fatigue strength of components by laser shot peening,” Opt. Lasers Eng. 34, 327–337 (2000).
  20. R. A. House, J. R. Bettis, and A. H. Guenther, “Correlation of laser-induced damage with surface structure and preparation techniques of several optical glasses at 1.06 μm,” in Laser-Induced Damage in Optical Materials, National Bureau of Standards Spec. Pub. 462 (National Bureau of Standards, Washington D.C., 1976), pp. 305–320.
  21. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” in Laser-Induced Damage in Optical Materials: 1997, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, eds., Proc. SPIE 3244, 356–364 (1998).
  22. P. A. Temple, D. Milam, and W. H. Lowdermilk, “CO2-laser polishing of fused silica surfaces for increased laser damage resistance at 1.06 μm,” in Laser-Induced Damage in Optical Materials, National Bureau of Standards Spec. Pub. 620 (National Bureau of Standards, Washington, D.C., 1980), pp. 229–236.
  23. T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).
  24. L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” in Laser-Induced Damage in Optical Materials: 2000, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE 4347, 553–560 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited