OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 19 — Jul. 1, 2002
  • pp: 3816–3826

Volume image reconstruction for diffuse optical tomography

Uwe Hampel, Eckhard Schleicher, and Richard Freyer  »View Author Affiliations


Applied Optics, Vol. 41, Issue 19, pp. 3816-3826 (2002)
http://dx.doi.org/10.1364/AO.41.003816


View Full Text Article

Acrobat PDF (1843 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical tomography is a potential diagnostic method for visualizing optical properties of tissues <i>in vivo</i>. We present an optical tomography method that has been designed for imaging of the human testes, particularly for spectroscopic tumor differentiation. In this application we need to compute three-dimensional distributions of the optical contrast (absorption coefficient) in the tissue in real time. Thus we have given special care to elaborate an efficient inverse algorithm that takes the limitations of spatial resolution and data space point density into account. Our inverse solution is based on a linearization approach and a dedicated object space discretization. Furthermore, we introduce the concept of fuzzy voxels, which enables a reconstruction-inherent image smoothing.

© 2002 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Citation
Uwe Hampel, Eckhard Schleicher, and Richard Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-19-3816


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Chance, “Optical method,” Ann. Rev. Biophys. Chem. 20, 1–28 (1991).
  2. F. F. Jöbsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
  3. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–728 (1929).
  4. J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, and E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 184–190 (1997).
  5. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
  7. A. Maki, Y. Yamashita, and Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995).
  8. M. A. Franceschini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.
  9. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, and D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
  10. A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, and M. Kohl, eds., Proc. SPIE 3566, 151–160 (1998).
  11. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
  12. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
  13. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
  14. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
  15. J. R. Lakowicz and K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
  16. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997), http://www.
  17. B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
  18. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
  19. E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
  20. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
  21. S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash. 1993), Vol. IS11, pp. 35–64.
  22. K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
  23. R. Model, M. Orlt, M. Walzel, and R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” J. Opt. Soc. Am. A 14, 313–324 (1997).
  24. S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1997), http://www.
  25. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404–413 (1997), http://www.
  26. R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash. 1993), Vol. IS11, pp. 87–120.
  27. M. Schweiger and S. A. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
  28. F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
  29. E. Schleicher, U. Hampel, H. Zepnick, and R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels and J. G. Fujimoto, eds., Proc. SPIE 4160, 128–139 (2000).
  30. U. Hampel and R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
  31. S. R. Arridge, P. van der Zee, D. T. Delpy, and M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance and A. Katzir, eds., Proc. SPIE 1431, 204–215 (1991).
  32. G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” in Handbook for Automatic Computation II, F. L. Bauer, ed. (Springer-Verlag, New York, 1971).
  33. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
  34. P. Gilbert, “Iterative methods for the reconstruction of three-dimensional objects from projections,” J. Theor. Biol. 36, 105–117 (1972).
  35. U. Hampel, E. Schleicher, H. Zepnick, and R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou and G. A. Wagnieres, eds., Proc. SPIE 4432, 210–220 (2001).
  36. X. Cheng, and D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4, 299–307 (1999), http://www.
  37. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited