Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast

Not Accessible

Your library or personal account may give you access

Abstract

We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Reply to comment: Absolute measurement of roughness and lateral-correlation length of random surfaces by use of the simplified model of image-speckle contrast

Chuanfu Cheng, Chunxiang Liu, Ningyu Zhang, Tianqing Jia, Ruxin Li, and Zhizhan Xu
Appl. Opt. 42(14) 2523-2525 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved