OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 22 — Aug. 1, 2002
  • pp: 4712–4721

Multiple-Fiber Probe Design for Fluorescence Spectroscopy in Tissue

T. Joshua Pfefer, Kevin T. Schomacker, Marwood N. Ediger, and Norman S. Nishioka  »View Author Affiliations


Applied Optics, Vol. 41, Issue 22, pp. 4712-4721 (2002)
http://dx.doi.org/10.1364/AO.41.004712


View Full Text Article

Acrobat PDF (415 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fiber-optic probe is an essential component of many quantitative fluorescence spectroscopy systems, enabling delivery of excitation light and collection of remitted fluorescence in a wide variety of clinical and laboratory situations. However, there is little information available on the role of illumination-collection geometry to guide the design of these components. Therefore we used a Monte Carlo model to investigate the effect of multifiber probe design parameters—numerical aperture, fiber diameter, source-collection fiber separation distance, and fiber-tissue spacer thickness—on light propagation and the origin of detected fluorescence. An excitation wavelength of 400 nm and an emission wavelength of 630 nm were simulated. Noteworthy effects included an increase in axial selectivity with decreasing fiber size and a transition with increasing fiber-tissue spacer size from a subsurface peak in fluorophore sensitivity to a nearly monotonic decrease typical of single-fiber probes. We provide theoretical evidence that probe design strongly affects tissue interrogation. Therefore application-specific customization of probe design may lead to improvements in the efficacy of fluorescence-based diagnostic devices.

© 2002 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

Citation
T. Joshua Pfefer, Kevin T. Schomacker, Marwood N. Ediger, and Norman S. Nishioka, "Multiple-Fiber Probe Design for Fluorescence Spectroscopy in Tissue," Appl. Opt. 41, 4712-4721 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-22-4712

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited