OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 29 — Oct. 10, 2002
  • pp: 6080–6092

New paradigm for imaging systems

W. Thomas Cathey and Edward R. Dowski  »View Author Affiliations


Applied Optics, Vol. 41, Issue 29, pp. 6080-6092 (2002)
http://dx.doi.org/10.1364/AO.41.006080


View Full Text Article

Enhanced HTML    Acrobat PDF (2843 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new paradigm for designing hybrid imaging systems. These imaging systems use optics with a special aspheric surface to code the image so that the point-spread function or the modulation transfer function has specified characteristics. Signal processing then decodes the detected image. The coding can be done so that the depth of focus can be extended. This allows the manufacturing tolerance to be reduced, focus-related aberrations to be controlled, and imaging systems to be constructed with only one optical element plus some signal processing.

© 2002 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.0110) Imaging systems : Imaging systems
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(110.4850) Imaging systems : Optical transfer functions
(180.0180) Microscopy : Microscopy

History
Original Manuscript: January 15, 2002
Revised Manuscript: June 13, 2002
Published: October 10, 2002

Citation
W. Thomas Cathey and Edward R. Dowski, "New paradigm for imaging systems," Appl. Opt. 41, 6080-6092 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-29-6080


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–249 (1984). [CrossRef]
  2. J. Ojeda-Castañeda, E. Tepichin, A. Diaz, “Arbitrary high focal depth with quasioptimum real and positive transmittance apodizer,” Appl. Opt. 28, 2666–2670 (1989). [CrossRef]
  3. G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972). [CrossRef]
  4. E. R. Dowski, W. T. Cathey, “Single-lens, single-image, incoherent passive ranging systems,” Appl. Opt. 33, 6762–6773 (1994). [CrossRef] [PubMed]
  5. G. E. Johnson, “Passive ranging systems using orthogonal encoding,” Ph.D. dissertation (University of ColoradoBoulder, Colo., 2000).
  6. E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef] [PubMed]
  7. H. B. Wach, E. R. Dowski, W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998). [CrossRef]
  8. P. M. Woodward, Probability and Information Theory with Applications to Radar (Pergamon, New York, 1953).
  9. K.-H. Brenner, A. Lohmann, J. Ojeda-Castañeda, “The ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983). [CrossRef]
  10. A. W. Rihaczek, Principles of High Resolution Radar (McGraw-Hill, New York, 1969).
  11. A. Papoulis, “Ambiguity function in fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974). [CrossRef]
  12. A. R. FitzGerrell, E. R. Dowski, W. T. Cathey, “Defocus transfer function for circularly symmetric pupils,” Appl. Opt. 36, 5796–5804 (1997). [CrossRef] [PubMed]
  13. E. R. Dowski, “An information theory approach to incoherent information processing systems,” in Signal Recovery and Synthesis, Vol. 11 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 106–108.
  14. J. van der Gracht, G. W. Euliss, “Information-optimized extended depth-of-field imaging systems,” in Visual Information Processing X, S. K. Park, Z. Rahman, R. A. Schowengerdt, eds., Proc. SPIE4388, 103–112 (2001). [CrossRef]
  15. M. Roberts, “Athermalization of infrared optics: a review,” in Recent Trends in Optical Systems Design and Computer Lens Design Workshop II, R. E. Fischer, R. C. Juergens, eds., Proc. SPIE1049, 72–81 (1989). [CrossRef]
  16. T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156–160 (1981). [CrossRef]
  17. D. S. Grey, “Athermalization of optical systems,” J. Opt. Soc. Am. 38, 542–546 (1948). [CrossRef] [PubMed]
  18. E. R. Dowski, R. H. Cormack, S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” in Visual Information Processing IX, S. K. Park, Z. Rahman, eds., Proc. SPIE4041, 114–120 (2000). [CrossRef]
  19. G. P. Berhmann, J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited