OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 29 — Oct. 10, 2002
  • pp: 6200–6210

Diversity detection of speckles for double-wavelength interferometry on rough surfaces

Johannes Trautner and Gerd Leuchs  »View Author Affiliations

Applied Optics, Vol. 41, Issue 29, pp. 6200-6210 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When the topography of a rough surface is measured with a double-wavelength interferometer, the phase error of the signal corresponding to the synthetic wavelength increases in the vicinity of dark speckles. To overcome this problem we perform an amplitude-dependent averaging of the synthetic phase over independent speckles (diversity detection). We either use spatially neighboring speckles or in the case of depolarizing surfaces, we use speckles of the same spatial mode, but with orthogonal polarizations. For the latter case the lateral resolution stays unaffected. The reduction of the speckle noise is demonstrated experimentally for a laterally scanning double-wavelength interferometer with superheterodyne detection of the synthetic phase.

© 2002 Optical Society of America

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness

Original Manuscript: March 28, 2002
Revised Manuscript: June 18, 2002
Published: October 10, 2002

Johannes Trautner and Gerd Leuchs, "Diversity detection of speckles for double-wavelength interferometry on rough surfaces," Appl. Opt. 41, 6200-6210 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer, Berlin, 1984), pp. 9–75.
  2. J. C. Wyant, “Testing aspherics using two-wavelength holography,” Appl. Opt. 10, 2113–2118 (1971). [CrossRef] [PubMed]
  3. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973). [CrossRef] [PubMed]
  4. A. F. Fercher, H. Z. Hu, U. Vry, “Rough surface interferometry with a two-wavelength heterodyne speckle interferometer,” Appl. Opt. 24, 2181–2188 (1985). [CrossRef] [PubMed]
  5. S. Donati, G. Martini, “Speckle-pattern intensity and phase: Second-order conditional statistics,” J. Opt. Soc. Am. 69, 1690–1694 (1979). [CrossRef]
  6. U. Vry, A. F. Fercher, “Higher-order statistical properties of speckle fields and their application to rough-surface interferometry,” J. Opt. Soc. Am. A 3, 988–1000 (1986). [CrossRef]
  7. G. P. Agrawal, Fiber-Optic Communication Systems, Wiley series in microwave and optical engineering, K. Chang, ed. (Wiley, New York, 1992).
  8. R. Dändliker, M. Geiser, C. Giunti, S. Zatti, G. Margheri, “Improvement of speckle statistics in double-wavelength superheterodyne interferometry,” Appl. Opt. 34, 7197–7201 (1995). [CrossRef] [PubMed]
  9. G. Margheri, C. Giunti, S. Zatti, S. Manhart, R. Maurer, “Double-wavelength superheterodyne interferometer for absolute ranging with submillimeter resolution: results obtained with a demonstration model by use of rough and reflective targets,” Appl. Opt. 36, 6211–6216 (1997). [CrossRef]
  10. A. Brozeit, J. Burke, H. Helmers, H. Sagehorn, R. Schuh, “Noise reduction in electronic speckle pattern interferometry fringes by merging orthogonally polarised speckle fields,” Opt. Laser Technol. 30, 325–329 (1998). [CrossRef]
  11. R. Dändliker, Y. Salvade, “Multiple-wavelength interferometry for absolute distance measurement,” in International Trends in Optics and Photonics, T. Asakura, ed. (Springer, Berlin, 1999), pp. 294–317. [CrossRef]
  12. J. Trautner, K. Walcher, G. Leuchs, B. Bodermann, H. R. Telle, “Mehrwellenlängen-Interferometrie zur absoluten Abstandsmessung und 3D-Bildgebung,” Technisches Messen 67, 406–409 (2000). [CrossRef]
  13. R. Dändliker, R. Thalmann, D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988). [CrossRef] [PubMed]
  14. Z. Sodnik, E. Fischer, T. Ittner, H. J. Tiziani, “Two-wavelength double heterodyne interferometry using a matched grating technique,” Appl. Opt. 30, 3139–3144 (1991). [CrossRef] [PubMed]
  15. J. M. Schmitt, “Array detection for speckle reduction in optical coherence microscopy,” Phys. Med. Biol. 42, 1427–1439 (1997). [CrossRef] [PubMed]
  16. J. Trautner, G. Leuchs, “Interferometrische Einrichtung zur Messung der Lage eines reflektierenden Objektes,” Patentschrift DE100 38 346 A1 (2000).
  17. H. J. Tiziani, A. Rothe, N. Maier, “Dual-wavelength heterodyne differential interferometer for high-precision measurements of reflective aspherical surfaces and step heights,” Appl. Opt. 35, 3525–3533 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited