OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 3 — Jan. 20, 2002
  • pp: 560–563

Static Fourier-transform spectrometer with spherical reflectors

Gao Zhan  »View Author Affiliations

Applied Optics, Vol. 41, Issue 3, pp. 560-563 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (112 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact reflection Fourier-transform spectrometer without moving parts is developed. The spectrometer consists of two spherical reflectors: a Sagnac interferometer and a linear detector. The developed system is as small as 202 mm long × 185 mm wide × 100 mm high. The optics and the system configuration are described, and the preliminary experimental results are shown.

© 2002 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(300.6190) Spectroscopy : Spectrometers

Original Manuscript: September 25, 2000
Revised Manuscript: September 4, 2001
Published: January 20, 2002

Gao Zhan, "Static Fourier-transform spectrometer with spherical reflectors," Appl. Opt. 41, 560-563 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Persky, “A review of space infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995). [CrossRef]
  2. P. D. Hammer, F. P. J. Valcro, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993). [CrossRef]
  3. S. Prunet, B. Journet, G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999). [CrossRef]
  4. L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. Illing, eds., Proc. SPIE2480, 418–424 (1995). [CrossRef]
  5. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996). [CrossRef]
  6. M. J. Padgett, A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995). [CrossRef]
  7. J. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier-transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995). [CrossRef] [PubMed]
  8. M. Hashimoto, S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992). [CrossRef] [PubMed]
  9. R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994). [CrossRef]
  10. R. G. Sellar, J. B. Rafert, “Fourier-transform imaging spectrometer with a single toroidal optic,” Appl. Opt. 34, 2931–2933 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited