OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6410–6415

Recurring beams in hollow metal waveguides: paraxial approximation

Lee W. Casperson  »View Author Affiliations


Applied Optics, Vol. 41, Issue 30, pp. 6410-6415 (2002)
http://dx.doi.org/10.1364/AO.41.006410


View Full Text Article

Enhanced HTML    Acrobat PDF (109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For optical and near-optical applications in electromagnetics, the directed propagation of waves in free space and in lenslike media is often in the Cartesian form of Gaussian or more general Hermite-sinusoidal-Gaussian beams. It has been shown that recurring (rather than continuing) forms of such beams are possible in the paraxial approximation for certain hollow metal waveguides, in which multiple reflections from the waveguide walls may occur. Limitations on this recurrence behavior implicit in use of the paraxial approximation are considered here, and estimates are obtained for the maximum propagation distance before the onset of significant distortion of the recurring beams.

© 2002 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: February 5, 2002
Revised Manuscript: July 2, 2002
Published: October 20, 2002

Citation
Lee W. Casperson, "Recurring beams in hollow metal waveguides: paraxial approximation," Appl. Opt. 41, 6410-6415 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-30-6410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Garmire, T. McMahon, M. Bass, “Propagation of infrared light in flexible hollow waveguides,” Appl. Opt. 15, 145–150 (1976). [CrossRef] [PubMed]
  2. E. Garmire, “Propagation of IR light in flexible hollow waveguides: further discussion,” Appl. Opt. 15, 3037–3039 (1976). [CrossRef] [PubMed]
  3. E. Garmire, T. McMahon, M. Bass, “Low-loss optical transmission through bent hollow metal waveguides,” Appl. Phys. Lett. 31, 92–94 (1977). [CrossRef]
  4. E. Garmire, T. McMahon, M. Bass, “Measurements of propagation in flexible infrared transmissive (FIT) waveguides,” IEEE J. Quantum Electron. QE-13, 21–22 (1977).
  5. T. Matsushima, I. Yamauchi, T. Sueta, “Flexible infrared-transmissive plastic waveguides coated with evaporated aluminum,” Jpn. J. Appl. Phys. 20, 1345–1346 (1981). [CrossRef]
  6. J. Gombert, M. Gazard, “Attenuation characteristics of a planar dielectric coated metallic waveguide for 10.6-µm radiation,” Opt. Commun. 58, 307–310 (1986). [CrossRef]
  7. M. Miyagi, S. Karasawa, “A comparative study of rectangular and circular dielectric-coated metallic waveguides for CO2 laser light: theory,” Opt. Commun. 68, 18–20 (1988). [CrossRef]
  8. S. V. Azizbekyan, V. G. Artyushenko, K. I. Kalaidzhyan, M. M. Mirakyan, I. L. Pyl’nov, “Bending loss of hollow metal waveguides for mid-infrared range,” Sov. Tech. Phys. Lett. 15, 602–603 (1989).
  9. S. Karasawa, M. Miyagi, T. Nakamura, H. Ishikawa, “Fabrication of dielectric-coated rectangular hollow waveguides for CO2 laser light transmission,” Trans. Inst. Electron. Inf. Commun. Eng. C-I J72, 637–641 (1989).
  10. S. V. Azizbekyan, V. G. Artyushenko, E. M. Dianov, K. I. Kalaidzhyan, M. M. Mirakyan, “Transmission of hollow metal waveguides in the mid-infrared region,” Sov. Phys. Tech. Phys. 35, 196–198 (1990).
  11. V. G. Artyushenko, K. I. Kalaidzhyan, M. M. Mirakyan, “Flexible hollow waveguides for the mid-IR range,” Sov. Phys. Tech. Phys. 36, 46–49 (1991).
  12. H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguide for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991). [CrossRef]
  13. Y. Matsuura, M. Miyagi, “Bending losses and beam profiles of zinc selenide-coated silver waveguides for carbon dioxide laser light,” Appl. Opt. 31, 6441–6445 (1992). [CrossRef] [PubMed]
  14. H. Machida, Y. Matsuura, H. Ishikawa, M. Miyagi, “Transmission properties of rectangular hollow waveguides for CO2 laser light,” Appl. Opt. 31, 7616–7622 (1992). [CrossRef]
  15. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993). [CrossRef] [PubMed]
  16. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994). [CrossRef] [PubMed]
  17. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near singlemode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994). [CrossRef]
  18. R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996). [CrossRef] [PubMed]
  19. D. Su, S. Somkuarnpanit, D. R. Hall, J. D. C. Jones, “Thermal effects in a hollow waveguide beam launch for CO2 laser power delivery,” Appl. Opt. 35, 4787–4789 (1996). [CrossRef] [PubMed]
  20. J. Dal, J. A. Harrington, “High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides,” Appl. Opt. 36, 5072–5077 (1997). [CrossRef]
  21. D. C. Chang, E. F. Kuester, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 923–933 (1981). [CrossRef]
  22. L. W. Casperson, “Gaussian beams in hollow metal waveguides,” J. Opt. Soc. Am. A 17, 1115–1123 (2000). [CrossRef]
  23. M. Ghita, L. W. Casperson, “Gaussian beams in hollow metal waveguides: experiment,” Appl. Opt. 40, 5459–5462 (2001). [CrossRef]
  24. L. A. Rivlin, V. S. Shul’dyaev, “Multimode waveguides for coherent light,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 11, 572–578 (1968).
  25. E. E. Grigor’eva, A. T. Semenov, “Waveguide image transmission in coherent light (review),” Sov. J. Quantum Electron. 8, 1063–1073 (1978). [CrossRef]
  26. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434–2441 (1973). [CrossRef] [PubMed]
  27. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Academic, New York, 1965), Eq. (3.896-1).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited