OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 30 — Oct. 20, 2002
  • pp: 6442–6450

Analysis of the Performance of a Coherent Pulsed Fiber Lidar for Aerosol Backscatter Applications

Guy N. Pearson, P. John Roberts, Justin R. Eacock, and Michael Harris  »View Author Affiliations

Applied Optics, Vol. 41, Issue 30, pp. 6442-6450 (2002)

View Full Text Article

Acrobat PDF (202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 μm. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated.

© 2002 Optical Society of America

OCIS Codes
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar

Guy N. Pearson, P. John Roberts, Justin R. Eacock, and Michael Harris, "Analysis of the Performance of a Coherent Pulsed Fiber Lidar for Aerosol Backscatter Applications," Appl. Opt. 41, 6442-6450 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. M. Huffaker and R. M. Hardesty, “Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems,” Proc. IEEE 84, 181–204 (1996).
  2. J. G. Hawley, R. Targ, S. W. Henderson, C. P. Hale, M. J. Kavaya, and D. Moerder, “Coherent launch site atmospheric wind sounder: theory and experiment,” Appl. Opt. 32, 4557–4568 (1993).
  3. Y. Z. Zhao, “Line-pair selections for remote sensing of atmospheric ammonia by use of a coherent CO2 differential absorption lidar system,” Appl. Opt. 39, 997–1007 (2000).
  4. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Burns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sen. 31, 4–15 (1993).
  5. J. M. Vaughan, O. K. Steinvall, C. Werner, and P. H. Flamant, “Coherent laser radar in Europe,” Proc. IEEE 84, 205–225 (1996).
  6. M. J. Post and R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
  7. R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2 μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
  8. A. J. McGrath, J. Munch, G. Smith, and P. Veitch, “Injection-seeded, single-frequency, Q-switched erbium:glass laser for remote sensing,” Appl. Opt. 37, 5706–5709 (1998).
  9. K. P. Chan and D. K. Killinger, “Short pulse coherent Doppler Nd:YAG lidar,” Opt. Eng. 30, 49–54 (1991).
  10. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
  11. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Atmos. Oceanic Technol. 18, 376–393 (2001).
  12. W. E. Baker, “Utilization of satellite winds for climate and global change studies,” Global Planet Change 90, 157–163 (1991).
  13. L. M. Little and G. Papen, “Fiber-based lidar for atmospheric water-vapor measurements,” Appl. Opt. 40, 3417–3427 (2001).
  14. A. A. Dorrington, R. Kunnemeyer, and P. M. Danehy, “Reference-beam storage for long-range low-coherence pulsed Doppler lidar,” Appl. Opt. 40, 3076–3081 (2001).
  15. M. Harris, G. Constant, and C. Ward, “Continuous-wave bistatic laser Doppler wind sensor,” Appl. Opt. 40, 1501–1506 (2001).
  16. M. Harris, G. N. Pearson, K. D. Ridley, C. Karlsson, F. Olsson, and D. Letalick, “Single-particle laser Doppler anemometry at 1.55 μm,” Appl. Opt. 40, 969–973 (2001).
  17. K. D. Ridley, G. N. Pearson, and M. Harris, “Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing,” Appl. Opt. 40, 2017–2023 (2001).
  18. C. Karlsson, F. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39, 3716–3726 (2000).
  19. D. J. Richardson, P. Britton, and D. Taverner, “Diode-pumped, high energy, single transverse mode Q-switched fibre laser,” Electron. Lett. 33, 1955–1956 (1997).
  20. G. N. Pearson and J. Eacock, “Fibre-based coherent pulsed Doppler lidar for atmospheric monitoring,” in Lidar Remote Sensing for Industrial and Environment Monitoring, U. Singh, ed., Proc. SPIE 4484, 51–57 (2001).
  21. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Incoherent spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
  22. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sens. 31, 28–35 (1993).
  23. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
  24. R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of winds in the weak signal regime,” Appl. Opt. 36, 3491–3499 (1997).
  25. A. E. Siegman, “Antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966).
  26. B. J. Rye, “Refractive-turbulence contribution to incoherent backscatter heterodyne lidar returns,” J. Opt. Soc. Am. 71, 687–691 (1981).
  27. R. G. Frehlich, “Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets,” J. Mod. Opt. 41, 2115–2129 (1994).
  28. C. M. Sonnenschein and F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
  29. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, and P. H. Flamant, “Target reflectance measurements for calibration of lidar atmospheric backscatter,” Appl. Opt. 22, 2619–2628 (1983).
  30. Y. Z. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 1. Theory,” Appl. Opt. 29, 4111–4119 (1990).
  31. Y. Z. Zhao, M. J. Post, and R. M. Hardesty, “Receiving efficiency of monostatic pulsed coherent lidars. 2. Applications,” Appl. Opt. 29, 4120–4132 (1990).
  32. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979).
  33. G. N. Pearson and C. G. Collier, “A pulsed coherent CO2 lidar for boundary layer meteorology,” Q. J. R. Meteorol. Soc. 125, 2703–2721 (1999).
  34. J. L. Gras, C. M. R. Platt, W. D. Jones, R. M. Huffaker, S. A. Young, S. M. Banks, and D. J. Booth, “Southern-hemisphere tropospheric aerosol backscatter measurements: implications for a laser wind system,” J. Geophys. Res. 96, 5357–5367 (1991).
  35. V. Srivastava, J. Rothermel, A. D. Clarke, J. D. Spinhirne, R. T. Menzies, D. R. Cutten, M. A. Jarzembski, D. A. Bowdle, and E. W. McCaul, “Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: application to 2.1-μm space-based and airborne lidars,” Appl. Opt. 40, 4759–4769 (2001).
  36. J. M. Vaughan, D. W. Brown, C. Nash, S. B. Alejandro, and G. G. Koenig, “Atlantic atmospheric aerosol studies. 2. Compendium of airborne backscatter measurements at 10.6 μm,” J. Geophys. Res. 100, 1043–1065 (1995).
  37. M. J. Post and R. E. Cupp, “CO2 lidar backscatter profiles over Hawaii during fall 1988,” Appl. Opt. 31, 4590–4599 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited