OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 31 — Nov. 1, 2002
  • pp: 6614–6620

Parallel Flow Measurements in Microstructures by Use of a Multifocal 4 x 1 Diffractive Optical Fan-Out Element

Hans Blom, Mathias Johansson, Michael Gösch, Toni Sigmundsson, Johan Holm, Sverker Hård, and Rudolf Rigler  »View Author Affiliations

Applied Optics, Vol. 41, Issue 31, pp. 6614-6620 (2002)

View Full Text Article

Acrobat PDF (620 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a multifocal optical fluorescence correlation spectroscopy system for parallel flow analyses. Multifocal excitation was made possible through a 4 × 1 diffractive optical fan-out element, which produces uniform intensity in all four foci. Autocorrelation flow analyses inside a 20 μm × 20 μm square microchannel, with the 4 × 1 fan-out foci perpendicular to the flow direction, made it possible to monitor different flows in all four foci simultaneously. We were able to perform cross-correlation flow analyses by turning the microstructure, thereby having all four foci parallel to the direction of flow. Transport effects of the diffusion as a function of flow and distance could then also be studied.

© 2002 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.4000) Optical design and fabrication : Microstructure fabrication
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

Hans Blom, Mathias Johansson, Michael Gösch, Toni Sigmundsson, Johan Holm, Sverker Hård, and Rudolf Rigler, "Parallel Flow Measurements in Microstructures by Use of a Multifocal 4 x 1 Diffractive Optical Fan-Out Element," Appl. Opt. 41, 6614-6620 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science 270, 467–470 (1995).
  2. D. Whitecomb, C. R. Newton, and S. Little, “Advantages in approaches to DNA-based diagnostics,” Curr. Opin. Biotechnol. 9, 602–608 (1998).
  3. N. S. Gray, L. Wodicka, A.-M. W. H. Thunnissen, T. C. Norman, S. Kwon, F. H. Espinoza, D. O. Morgan, G. Barnes, S. LeClerc, L. Meijer, S.-H. Kim, D. J. Lockhart, and P. G. Schultz, “Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors,” Science 281, 533–538 (1998).
  4. M. J. Marton, J. L. DeRisi, H. A. Bennett, V. R. Iyer, M. R. Meyer, C. J. Roberts, R. Stoughton, J. Burchard, D. Slade, H. Dai, D. E. Bassett, L. H. Hartwell, P. O. Brown, and S. H. Friend, “Drug target validation and identification of secondary drug target effects using DNA microarrays,” Nature Med. 4, 1293–1301 (1998).
  5. L. C. Usich-Wilson, X.-D. Xiang, and P. G. Schultz, “Lessons from the immune system: from catalysis to materials science,” Acc. Chem. Res. 29, 164–170 (1996).
  6. D. J. Lockhart and E. A. Winzeler, “Genomics, gene expression and DNA arrays,” Nature 405, 827–836 (2000).
  7. D. R. Walt, “Bead based fiber-optical arrays,” Science 287, 451–452 (2000).
  8. A. van den Berg and P. Bergveld, eds., Micro Total Analysis Systems (Kluwer Academic, Dordrecht, The Netherlands, 1994).
  9. D. J. Harrisson and A. van den Berg, eds., Micro Total Analysis Systems ’98 (Kluwer Academic, Dordrecht, The Netherlands, 1998).
  10. A. van den Berg, W. Olthuis, and P. Bergveld, eds., Micro Total Analysis Systems 2000 (Kluwer Academic, Dordrecht, The Netherlands, 2000).
  11. D. G. Wang, J.-B. Fang, C.-J. Siao, A. Berno, P. Young, R. Sopolsky, G. Ghandour, N. Perkins, E. Winchester, J. Spencer, L. Kruglyak, L. Stein, L. Hsie, T. Topaloglou, E. Hubbel, E. Robinson, M. Mittmann, M. S. Morris, N. Shen, D. Kilburn, J. Rioux, C. Nusbaum, S. Rozen, T. J. Hudson, R. Lipshuts, M. Chee, and E. S. Lander, “Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome,” Science 280, 1077–1082 (1998).
  12. R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart, “High density synthetic oligonucleotide arrays,” Nature Genet. 21, 20–24 (1999).
  13. H. Blom, M. Johansson, A.-S. Hedman, L. Lundberg, A. Hanning, S. Hård, and R. Rigler, “Parallel fluorescence detection of single biomolecules in microarrays using diffractive optical designed 2 × 2 fan-out element,” Appl. Opt. 41, 3336–3342 (2002).
  14. R. A. Keller, W. P. Ambrose, P. M. Goodwin, J. H. Jett, J. C. Martin, and W. Ming, “Single-molecule fluorescence analysis in solution,” Appl. Spectrosc. 50, 12A–32A (1996).
  15. R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy—Theory and Applications (Springer-Verlag, Berlin, 2001).
  16. M. Brinkmeier and R. Rigler, “Flow analysis by means of fluorescence correlation spectroscopy,” Exp. Tech. Phys. 41, 205–210 (1995).
  17. K. Q. Xia, Y. B. Xin, and P. Tong, “Dual-beam incoherent cross-correlation spectroscopy,” J. Opt. Soc. Am. A 12, 1571–1578 (1995).
  18. M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71, 609–616 (1999).
  19. D. J. LeCaptain and A. Van Orden, “Two-beam fluorescence cross-correlation spectroscopy in an electrophoretic mobility shift assay,” Anal. Chem. 74, 1171–1176 (2002).
  20. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34, 219–242 (1997).
  21. S. C. Holswade and F. M. Dickey, “Gaussian laser beam shaping: test and evaluation” in Current Developments in Optical Design and Engineering VI, R. E. Fischer and W. J. Smith, eds., Proc. SPIE 2863, 237–245 (1996).
  22. J. Bengtsson, “Design of fan-out kinoforms in the entire scalar diffraction regime with an optimal-rotation-angle method,” Appl. Opt. 36, 8435–8444 (1997).
  23. J. A. Cox, B. S. Fritz, and T. R. Werner, “Process error limitations on binary optics performance,” in Computer and Optically Generated Holographic Optics, 4th in a Series, I. Cindrich and S. H. Lee, eds., Proc. SPIE 1555, 80–88 (1991).
  24. J. Bengtsson and M. Johansson, “Fan-out diffractive optical elements designed for increased fabrication tolerances to linear depth errors,” Appl. Opt. 41, 281–289 (2002).
  25. D. Magde and E. L. Elson, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
  26. M. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. Experimental realizations,” Biopolymers 13, 29–61 (1974).
  27. M. Ehrenberg and R. Rigler, “Rotational Brownian motion and fluorescence intensity fluctuations,” Chem. Phys. 4, 390–401 (1974).
  28. M. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361–376 (1978).
  29. R. Rigler, U. Metz, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
  30. M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microstructures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72, 3260–3265 (2000).
  31. S. A. Soper, H. L. Nutter, R. A. Keller, L. M. Davis, and E. B. Shera, “The photophysical constants of several fluorescent dyes pertaining to ultra sensitive fluorescence spectroscopy,” Photochem. Photobiol. 57, 972–977 (1993).
  32. S. A. Zugel and F. E. Lytle, “Two-photon excitation in square and cylindrical capillaries,” Appl. Spectrosc. 54, 1203–1207 (2000).
  33. B. H. Weigl, R. L. Bardell, N. Kesler, and C. J. Morris, “Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces—computional fluidic dynamics model results and fluidic verification experiments,” Fresenius J. Anal. Chem. 371, 97–105 (2001).
  34. D. S. Mehta, C. Y. Lee, and A. Chiou, “Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays,” Opt. Commun. 190, 59–68 (2001).
  35. H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of VCSEL and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited