OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 34 — Dec. 2, 2002
  • pp: 7346–7358

Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique

Feng Gao, Yukari Tanikawa, Huijuan Zhao, and Yukio Yamada  »View Author Affiliations

Applied Optics, Vol. 41, Issue 34, pp. 7346-7358 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (1732 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although a full three-dimensional (3-D) reconstruction with both 3-D forward and inverse models provides the optimal solution for diffuse optical tomography (DOT), because of the 3-D nature of photon diffusion in tissue, it is computationally costly for both memory requirement and execution time in a conventional computing environment. Thus in practice there is motivation to develop an image reconstruction algorithm with dimensional reduction based on some modeling approximations. Here we have implemented a semi-3-D modified generalized pulse spectrum technique for time-resolved DOT, where a two-dimensional (2-D) distribution of optical properties is approximately assumed, while we retain 3-D distribution of photon migration in tissue. We have validated the proposed algorithm by reconstructing 3-D structural test objects from both numerically simulated and experimental data. We demonstrate our algorithm by comparing it with the calibrated 2-D reconstruction that is in widespread use as a shortcut to 3-D imaging and proving that the semi-3-D algorithm outperforms the calibrated 2-D algorithm.

© 2002 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

Original Manuscript: February 25, 2002
Revised Manuscript: June 12, 2002
Published: December 1, 2002

Feng Gao, Yukari Tanikawa, Huijuan Zhao, and Yukio Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Österberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999). [CrossRef]
  2. S. B. Colak, D. G. Papaioannou, G. W. t’Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997). [CrossRef] [PubMed]
  3. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000). [CrossRef]
  4. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  5. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001). [CrossRef] [PubMed]
  6. Y. Xu, N. V. Iftimia, H. Jiang, L. L. Key, M. B. Bolster, “Imaging of in vitro and in vivo bones and joints with continuous-wave diffuse optical tomography,” Opt. Express 8, 447–451 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  7. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a conical breast phantom,” Appl. Opt. 40, 3278–3287 (2001). [CrossRef]
  8. F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000). [CrossRef]
  9. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999). [CrossRef]
  10. M. Schweiger, S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44, 1699–1717 (1999). [CrossRef] [PubMed]
  11. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehghani, D. T. Delpy, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000). [CrossRef]
  12. J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method with an approximate Frechet derivative for optical diffusion tomography,” J. Opt. Soc. Am. A 16, 1814–1826 (1999). [CrossRef]
  13. F. Gao, H. Zhao, Y. Tanikawa, Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICE Trans. Inf. Syst. E85-D, 133–142 (2002), http://search.ieice.org/2002/files/e110d.htm#e85-d,1,1 .
  14. M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998). [CrossRef]
  15. Y. M. Chen, “Generalized pulse spectrum technique,” Geophysics 50, 1664–1675 (1985). [CrossRef]
  16. D. Colton, P. Monk, “A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium,” J. Comput. Appl. Math. 42, 5–16 (1992). [CrossRef]
  17. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  18. Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001). [CrossRef]
  19. F. Gao, H. Zhao, Y. Onodera, A. Sassaroli, Y. Tanikawa, Y. Yamada, “Image reconstruction from experimental measurements of a multichannel time-resolved optical tomographic imaging system,” in Optical Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds., Proc. SPIE4250, 351–361 (2001).
  20. F. Bevilacqua, D. Piguet, P. Marguet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: application to human brain,” Appl. Opt. 32, 574–579 (1993).
  21. S. R. Arridge, “Photon-measurement density functions. Part 1: Analytic forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef] [PubMed]
  23. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, M. Tamura, “Multichannel time-resolved optical tomographic imaging system,” Rev. Sci. Instrum. 70, 3595–3601 (1999). [CrossRef]
  24. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).
  25. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  26. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” NeuroImage 13, 76–90 (2001). [CrossRef] [PubMed]
  27. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Information Processing in Medical Imaging, J. Duncan, G. Gindi, eds., Vol. 1230 of Springer Lecture Notes in Computer Science (Springer-Verlag, Berlin, 1997).
  28. G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994). [CrossRef] [PubMed]
  29. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999). [CrossRef]
  30. F. Gao, H. Zhao, Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited