OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 36 — Dec. 20, 2002
  • pp: 7583–7587

Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser

Elizabeth A. Cummings, Malcolm S. Hicken, and Scott D. Bergeson  »View Author Affiliations

Applied Optics, Vol. 41, Issue 36, pp. 7583-7587 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (79 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a 1-W injection-locked cw titanium:sapphire ring laser at 846 nm. Single-frequency operation requires only a few milliwatts of injected power. This relatively simple and inexpensive system can be used for watt-level single-frequency lasers across most of the titanium:sapphire gain region. A brief review of injection-locking theory is given, and conclusions based on this theory indicate ways to improve the performance of the system.

© 2002 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3560) Lasers and laser optics : Lasers, ring
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3590) Lasers and laser optics : Lasers, titanium
(140.4480) Lasers and laser optics : Optical amplifiers

Original Manuscript: June 12, 2002
Revised Manuscript: October 2, 2002
Published: December 20, 2002

Elizabeth A. Cummings, Malcolm S. Hicken, and Scott D. Bergeson, "Demonstration of a 1-W injection-locked continuous-wave titanium:sapphire laser," Appl. Opt. 41, 7583-7587 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Goldberg, L. E. Busse, D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor amplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2237–2329 (1993). [CrossRef]
  2. M. Praeger, V. Vuletic, T. Fischer, T. W. Hänsch, C. Zimmermann, “A broad emitter diode laser system for lithium spectroscopy,” Appl. Phys. B 67, 163–166 (1998). [CrossRef]
  3. A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, D. M. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37, 4871–4875 (1998). [CrossRef]
  4. G. Ferrari, M.-O. Mewes, F. Schreck, C. Salomon, “High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier,” Opt. Lett. 24, 151–153 (1999). [CrossRef]
  5. C. W. Oates, F. Bondu, R. W. Fox, L. Hollberg, “A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection,” Eur. Phys. J. D 7, 449–460 (1999). [CrossRef]
  6. C. C. Harb, T. C. Ralph, E. H. Huntington, I. Freitag, D. E. McClelland, H.-A. Bachor, “Intensity-noise properties of injection-locked lasers,” Phys. Rev. A 54, 4370–4382 (2000). [CrossRef]
  7. D. J. Ottaway, P. J. Veitich, C. Hollitt, D. Mudge, M. W. Hamilton, J. Munch, “Frequency and intensity noise of an injection-locked Nd:YAG ring laser,” Appl. Phys. B 71, 163–168 (2000). [CrossRef]
  8. W. M. Tulloch, T. S. Rutherford, E. H. Huntington, R. Ewart, C. C. Harb, B. Willke, E. K. Gustafson, M. M. Fejer, R. L. Byer, S. Rowan, J. Hough, “Measurements of quantum power noise fluctuations in a cw, laser-diode-pumped Nd:YAG linear optical amplifier,” Opt. Lett. 23, 1852–1854 (1998). [CrossRef]
  9. A. D. Farinas, E. K. Gustafson, R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B 12, 328–334 (1995). [CrossRef]
  10. A. Siegman, Lasers (University Science, Sausalito, Calif., 1986).
  11. K.-C. Peng, L.-A. Wu, H. J. Kimble, “Frequency-stabilized Nd:YAG laser with high output power,” Appl. Opt. 24, 938–940 (1985). [CrossRef] [PubMed]
  12. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989). [CrossRef] [PubMed]
  13. R. F. Teehan, J. C. Bienfang, C. A. Denman, “Power-scaling and frequency stabilization of an injection-locked Nd:YAG rod laser,” Appl. Opt. 39, 3076–3084 (2000). [CrossRef]
  14. C. N. Man, A. Brillet, “Injection locking of argon-ion lasers,” Opt. Lett. 9, 333–334 (1984). [CrossRef] [PubMed]
  15. T. Urisu, T. Sugeta, Y. Mizushima, K. Tsunenari, “Stabilized injection locking light amplification of a 1.15-µm He–Ne laser,” J. Appl. Phys. 52, 3154–3158 (1981). [CrossRef]
  16. L. Goldberg, J. F. Weller, “Injection locking and single-mode fiber coupling of a 40-element laser diode array,” Appl. Phys. Lett. 50, 1713–1715 (1987). [CrossRef]
  17. B. Couillaud, A. Ducasse, E. Freysz, L. Sarger, “Experimental study of the injection-locked continuous-wave ring dye laser,” Opt. Lett. 9, 435–437 (1984). [CrossRef] [PubMed]
  18. C. H. Bair, P. Brockman, R. V. Hess, E. A. Moldin, “Demonstration of frequency control and cw diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988). [CrossRef]
  19. C.-K. Ni, A. H. Kung, “Amplified spontaneous emission reduction by use of the stimulated Brillouin scattering: 2-ns pulses from a Ti:Al2O3 amplifier chain,” Appl. Opt. 37, 530–535 (1998). [CrossRef]
  20. K. S. E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst, “Lamb shift measurement in the 1 1S ground state of helium,” Phys. Rev. A 55, 1866–1884 (1997). [CrossRef]
  21. S. D. Bergeson, A. Balakrishnan, K. G. H. Baldwin, T. B. Lucatorto, J. P. Marangos, T. J. McIlrath, T. R. O’Brian, S. L. Rolston, C. J. Sansonetti, J. Wen, N. Westbrook, C. H. Cheng, E. E. Eyler, “Measurement of the He ground state Lamb shift via the two-photon 11S-21S transition,” Phys. Rev. Lett. 80, 3475–3478 (1998). [CrossRef]
  22. P. Albers, E. Stark, G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B. 3, 134–139 (1986). [CrossRef]
  23. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988). [CrossRef]
  24. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, P. F. Moulton, “Low-threshold, cw, all-solid-stae Ti:Al2O3 laser,” Opt. Lett. 16, 581–583 (1991). [CrossRef] [PubMed]
  25. C. Zimmermann, V. Vuletic, A. Hemmerich, L. Ricci, T. W. Hänch, “Design for a compact tunable Ti:sapphire laser,” Opt. Lett. 20, 297–299 (1995). [CrossRef] [PubMed]
  26. Our extended cavity laser is a Vortex laser from New Focus Corp., 5215 Hellyer Ave., Suite 100, San Jose, Calif. 95138–1001.
  27. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972). [CrossRef]
  28. R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B. 31, 97–105 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited