OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 4 — Feb. 1, 2002
  • pp: 658–667

Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis

Frits F. M. de Mul, Lorenzo Scalise, Anna L. Petoukhova, Marc van Herwijnen, Paul Moes, and Wiendelt Steenbergen  »View Author Affiliations


Applied Optics, Vol. 41, Issue 4, pp. 658-667 (2002)
http://dx.doi.org/10.1364/AO.41.000658


View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a blood velocimeter based on the principle of self-mixing in a semiconductor laser diode through an optical fiber. The intensity of the light is modulated by feedback from moving scattering particles that contain the Doppler-shift frequency. Upon feedback the characteristics of the laser diode change. The threshold current decreases, and an instable region may become present above the new threshold. The amplitude of the Doppler signal turns out to be related to the difference in intensity between situations with and without feedback. This amplitude is highest just above feedback. The suppression of reflection from the glass-fiber facets is of paramount importance in the obtaining of a higher signal-to-noise ratio. Using an optical stabilization of the feedback, we optimized the performance of the laser-fiber system and the Doppler modulation depth and clarified its behavior with a suitable physical model. We also investigated the effect of the finite coherence length of the laser. We tested the efficiency of the self-mixing velocimeter in vivo with the optical glass fiber inserted in the artery with endoscopic catheters, both in upstream and in downstream blood flow conditions. For the latter we used a special side-reflecting device solution for the fiber facet to allow downstream measurements.

© 2002 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(230.0230) Optical devices : Optical devices

History
Original Manuscript: April 10, 2001
Revised Manuscript: September 4, 2001
Published: February 1, 2002

Citation
Frits F. M. de Mul, Lorenzo Scalise, Anna L. Petoukhova, Marc van Herwijnen, Paul Moes, and Wiendelt Steenbergen, "Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis," Appl. Opt. 41, 658-667 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-4-658

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited