OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 6 — Feb. 20, 2002
  • pp: 1075–1081

Passively Q-Switched Quasi-Three-Level Laser and Its Intracavity Frequency Doubling

Chun-Wei Wang, Yi-Lung Weng, Pi-Ling Huang, Huy-Zu Cheng, and Sheng-Lung Huang  »View Author Affiliations


Applied Optics, Vol. 41, Issue 6, pp. 1075-1081 (2002)
http://dx.doi.org/10.1364/AO.41.001075


View Full Text Article

Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A passively <i>Q</i>-switched quasi-three-level Nd:YAG laser is intracavity frequency doubled to generate a blue laser. The 473-nm blue laser has a peak power of 37 W and a pulse width of 23 ns at a pumping power of 1.6 W. To model this laser numerically, we developed rate equations by taking into consideration both the quasi-three-level nature of the gain medium and the four-level nature of the saturable absorber. Good agreement was achieved between experimental and simulated results for both the fundamental and the second-harmonic output. The reabsorption loss of the gain medium is estimated under pulsed operation.

© 2002 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5940) Nonlinear optics : Self-action effects

Citation
Chun-Wei Wang, Yi-Lung Weng, Pi-Ling Huang, Huy-Zu Cheng, and Sheng-Lung Huang, "Passively Q-Switched Quasi-Three-Level Laser and Its Intracavity Frequency Doubling," Appl. Opt. 41, 1075-1081 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-6-1075


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Jones-Bey, “Expiring license opens field for solid-state blue lasers,” Laser Focus World 36(1), 133–137 (2000).
  2. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, Fla., 1996).
  3. T. Kellner, F. Heine, V. Ostroumov, G. Huber, and T. Halldorsson, “High power diode-pumped intracavity frequency doubled cw Nd:YAG laser at 473 nm,” in Advanced Solid State Lasers, C. R. Pollock and W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1997), pp. 46–49.
  4. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Opt. Lett. 24, 205–207 (1999).
  5. V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St. J. Russell, and D. C. Hanna, “49 mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
  6. D. G. Matthews, R. S. Conroy, B. D. Sinclair, and N. MacKinnon, “Blue microchip laser fabricated from Nd:YAG and KNbO3,” Opt. Lett. 21, 198–200 (1996).
  7. P. Zeller and P. Peuser, “Efficient, multiwatt, continuous-wave laser operation on the 4F3/2–4I9/2 transitions of Nd:YVO4 and Nd:YAG,” Opt. Lett. 25, 34–36 (2000).
  8. I. D. Lindsay and M. Ebrahimzadeh, “Efficient continuous-wave and Q-switched operation of a 946-nm Nd:YAG laser pumped by an injection-locked broad-area diode laser,” Appl. Opt. 37, 3961–3970 (1998).
  9. T. Kellner, F. Heine, G. Huber, and S. Kuck, “Passive Q-switching of a diode-pumped 946-nm Nd:YAG with 1.6-W average output power,” Appl. Opt. 37, 7076–7079 (1998).
  10. G. Xiao and M. Bass, “A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber,” IEEE J. Quantum Electron. 33, 41–44 (1997).
  11. G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
  12. A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE J. Quantum Electron. 35, 1548–1553 (1999).
  13. A. Szabo and R. A. Stein, “Theory of laser giant pulsing by a saturable absorber,” J. Appl. Phys. 36, 1562–1566 (1965).
  14. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
  15. S. M. Shahruz and T. A. Mahavaraha, “A system theoretic approach to the stability of passively Q-switched lasers,” IEEE Trans. Circuits Syst. 46, 512–517 (1999).
  16. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
  17. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (1992).
  18. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423 (1988).
  19. G. E. James, E. M. Harrell II, C. Bracikowski, K. Wiesenfeld, and R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett. 15, 1141–1143 (1990).
  20. S. L. Huang, F. J. Kao, H. S. Hsieh, and C. S. Hsu, “Polarization-dependent periodic pulse oscillation in a diode-laser-pumped and intracavity-frequency-doubled Nd:YVO4 laser,” Appl. Opt. 37, 2397–2401 (1998).
  21. J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE J. Quantum Electron. 35, 1724–1730 (1999).
  22. S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing jitter reduction of a passively Q-switched laser,” Jpn. J. Appl. Phys. 38, L239–L241 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited