OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 41, Iss. 7 — Mar. 1, 2002
  • pp: 1385–1390

Multilayer ARROW channel waveguide for evanescent field enhancement in low-index media

Husain A. Jamid  »View Author Affiliations

Applied Optics, Vol. 41, Issue 7, pp. 1385-1390 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multilayer antiresonance reflecting optical waveguide (ARROW) channel waveguide geometry, believed to be novel, is proposed for enhancing the evanescent field in low-index materials. The finite-difference method is used in the analysis of the structure. The fraction of the fundamental TE-like-mode power in the low-index material (air) is used as a measure of the evanescent field enhancement. The calculated results suggest that the evanescent field of the fundamental TE-like mode can be significantly increased in air while the low modal loss that characterizes the leaky nature of the structure is maintained. The results also suggest that a semivectorial approach to this problem is adequate for analysis of the proposed waveguide structure.

© 2002 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(230.7380) Optical devices : Waveguides, channeled

Original Manuscript: June 26, 2001
Revised Manuscript: October 22, 2001
Published: March 1, 2002

Husain A. Jamid, "Multilayer ARROW channel waveguide for evanescent field enhancement in low-index media," Appl. Opt. 41, 1385-1390 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Remley, A. Weisshaar, “Design and analysis of silicon-based antiresonant reflecting optical waveguide chemical sensor,” Opt. Lett. 21, 1241–1243 (1996). [CrossRef] [PubMed]
  2. S. Kang, K. Sasaki, H. Minamitani, “Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption,” Appl. Opt. 32, 3544–3549 (1993). [CrossRef] [PubMed]
  3. J. F. Govin, A. Doyle, B. D. MacCraith, “Florescence capture by planar waveguide as platform for optical sensors,” Electron. Lett. 34, 685–1687 (1998).
  4. R. Heideman, R. Kooyman, J. Greve, B. Altenburg, “Simple inerferometer for evanescent field refractive index sensing as a feasibility study for immunosensor,” Appl. Opt. 30, 1474–1479 (1991). [CrossRef] [PubMed]
  5. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16, 583–592 (1998). [CrossRef]
  6. F. A. Muhammad, G. Stewart, W. Jin, “Sensitivity enhancement of D-fiber methane gas sensor using high-index overlay,” IEE Proc. J. 140, 115–118 (1993).
  7. F. Prieto, A. Llobera, D. Jimenez, A. Calle, L. Lechuga, “Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor,” J. Lightwave Technol. 18, 966–972 (2000). [CrossRef]
  8. O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16, 573–582 (1998). [CrossRef]
  9. G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, P. V. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensor,” J. Lightwave Technol. 18, 677–681 (2000). [CrossRef]
  10. M. Duguay, Y. Kokubun, T. Kock, “Antiresonant reflecting waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  11. W. Jiang, J. Chrostowski, M. Fontaine, “Analysis of ARROW waveguides,” Opt. Commun. 72, 180–186 (1989). [CrossRef]
  12. J. Kubica, D. Uttamchandani, B. Culshaw, “Modal propagation within ARROW waveguides” Opt. Commun. 78, 133–136 (1990). [CrossRef]
  13. C. Chen, P. Berini, D. Feng, V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides,” in Terahertz and Gigahertz Photonics, R. J. Hwu, K. Wu, eds., Proc. SPIE3795, 676–686 (1999). [CrossRef]
  14. P. Lusse, P. Stuwe, J. Schule, H. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–493 (1994). [CrossRef]
  15. J. C. Grant, J. C. Beal, N. J. P. Frenette, “Finite element analysis of the ARROW leaky optical waveguide,” IEEE J. Quantum. Electron. 30, 1250–1253 (1994). [CrossRef]
  16. I. Garces, F. Villuendas, J. A. Valles, C. Dominguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–804 (1996). [CrossRef]
  17. I. Garces, J. Subia, R. Alonso, “Analysis of the modal solutions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 17, 1566–1574 (1999). [CrossRef]
  18. H. A. Jamid, “Frequency-domain PML layer based on the complex mapping of space-boundary condition treatment,” IEEE Microwave Guided Wave Lett. 10, 356–358 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited