OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 7 — Mar. 1, 2002
  • pp: 1434–1445

Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements

Leonid I. Goray and John F. Seely  »View Author Affiliations


Applied Optics, Vol. 41, Issue 7, pp. 1434-1445 (2002)
http://dx.doi.org/10.1364/AO.41.001434


View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The near-normal-incidence efficiencies of a 2400-groove/mm holographic master grating, a replica grating, and a multilayer grating are modeled in the soft-x-ray-extreme-ultraviolet (EUV) regions and are compared with efficiencies that are measured with synchrotron radiation. The efficiencies are calculated by the computer program PCGrate, which is based on a rigorous modified integral method. The theory of our integral method is described both for monolayer and multilayer gratings designated for the soft-x-ray-EUV-wavelength range. The calculations account for the groove profile as determined from atomic force microscopy with a depth scaling in the case of the multilayer grating and an average random microroughness (0.7 nm) for the short wavelengths. The refractive indices of the grating substrate and coatings have been taken from different sources because of the wide range of the wavelengths (4.5–50 nm). The measured peak absolute efficiency of 10.4% in the second diffraction order at a wavelength of 11.4 nm is achieved for the multilayer grating and is in good agreement with a computed value of ∼11.5%. Rigorous modeling of the efficiencies of three similar gratings is in good overall agreement with the measured efficiency over a wide wavelength region. Additional calculations have indicated that relatively high normal incidence efficiency (of at least several percent) and large angular dispersion in the higher orders can be achieved in the 4.5–10.5-nm range by application of various multilayer coatings.

© 2002 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(260.7200) Physical optics : Ultraviolet, extreme
(310.6860) Thin films : Thin films, optical properties
(340.7470) X-ray optics : X-ray mirrors

History
Original Manuscript: May 16, 2001
Revised Manuscript: September 14, 2001
Published: March 1, 2002

Citation
Leonid I. Goray and John F. Seely, "Efficiencies of master, replica, and multilayer gratings for the soft-x-ray-extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements," Appl. Opt. 41, 1434-1445 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-7-1434

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited