OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 8 — Mar. 10, 2002
  • pp: 1541–1555

Implementation of a compact, four-stage, scalable optical interconnect for photonic backplane applications

Frederic Lacroix, Eric Bernier, Michael H. Ayliffe, Frank A. P. Tooley, David V. Plant, and Andrew G. Kirk  »View Author Affiliations


Applied Optics, Vol. 41, Issue 8, pp. 1541-1555 (2002)
http://dx.doi.org/10.1364/AO.41.001541


View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the implementation of a dense 512-beam free-space optical interconnect linking four optoelectronic VLSI chips at the backplane level. The system presented maximizes the positioning tolerances of the components by use of slow f-number (f/16) Gaussian beams and oversized apertures. A beam-clustering scheme whereby a 4 × 4 array of beams is transmitted by each minilens is used to provide a high channel density. A modular approach is used to decrease the number of degrees of freedom in the system and achieve passive alignment of the modules in the final integration phase. A design overview as well as assembly and experimental results are presented.

© 2002 Optical Society of America

OCIS Codes
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects
(200.4880) Optics in computing : Optomechanics

History
Original Manuscript: March 15, 2001
Revised Manuscript: November 26, 2001
Published: March 10, 2002

Citation
Frederic Lacroix, Eric Bernier, Michael H. Ayliffe, Frank A. P. Tooley, David V. Plant, and Andrew G. Kirk, "Implementation of a compact, four-stage, scalable optical interconnect for photonic backplane applications," Appl. Opt. 41, 1541-1555 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-8-1541


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, Calif., 1997), p. B1. See www.sematech.org .
  2. International Technology Roadmap for Semiconductor 1998 Update (Semiconductor Industry Association, San Jose, Calif., 1998), p. 4. See www.sematech.org .
  3. D. A. B. Miller, “Physical reasons for optical interconnections,” Int. J. Optoelectron. 11, 155–168 (1997).
  4. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” J. Sel. Top. Quantum Electron. 2, p. 3–13 (1996). [CrossRef]
  5. F. A. P. Tooley, A. Z. Shang, B. Robertson, “Alignment tolerant smart pixels,” in Advanced Applications of Lasers in Materials Processing/Broadband Optical Networks/Enabling Technologies and Applications/Smart Pixels/Optical MEM’s and Their Applications: IEEE/LEOS 1996 Summer Topical Meetings (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 55–56.
  6. K. Hirabayashi, T. Yamamoto, S. Hino, “Optical backplane with free-space optical interconnections using tunable beams deflectors and a mirror for bookshelf-assembled terabit per second class asynchronous transfer mode switch,” Opt. Eng. 37, 1332–1342 (1998). [CrossRef]
  7. M. A. Neifeld, R. K. Kostuk, “Error correction for free-space optical interconnects: space-time resource optimization,” Appl. Opt. 37, 296–307 (1998). [CrossRef]
  8. F. Lacroix, M. Chateauneuf, X. Xue, A. G. Kirk, “Experimental and numerical analyses of misalignment tolerances in free-space optical interconnects,” Appl. Opt. 39, 704–713 (2000). [CrossRef]
  9. T. H. Szymanski, H. S. Hinton, “A reconfigurable intelligent optical backplane for parallel computing and communications,” Appl. Opt. 35, 1253–1268 (1996). [CrossRef] [PubMed]
  10. B. Robertson, “Design of an optical interconnect for photonics backplane applications,” Appl. Opt. 37, 2974–2984 (1998). [CrossRef]
  11. D. F. Brosseau, F. Lacroix, M. H. Ayliffe, E. Bernier, B. Robertson, F. A. P. Tooley, D. V. Plant, A. G. Kirk, “Design, implementation, and characterization of a kinematically aligned, cascaded spot-array generator for a modulator-based free-space optical interconnect,” Appl. Opt. 39, 733–745 (2000). [CrossRef]
  12. D. R. Rolston, D. V. Plant, T. H. Szymanski, H. S. Hinton, W. S. Hsiao, M. H. Ayliffe, D. Kabal, M. B. Venditti, P. Desai, A. V. Krishnamoorthy, K. W. Goossen, J. A. Walker, B. Tseng, S. P. Hui, J. E. Cunningham, W. Y. Jan, “A hybrid-SEED smart pixel array for a four-stage intelligent optical backplane demonstrator,” IEEE J. Sel. Top. Quantum Electron. 2, 97–105 (1996). [CrossRef]
  13. F. Lacroix, “Analysis and implementation of a clustered, scalable and misalignment tolerant optical interconnect,” Master’s thesis (McGill University, Montréal, Québec, Canada, 1999).
  14. M. H. Ayliffe, D. Kabal, F. Lacroix, E. Bernier, P. Khurana, A. G. Kirk, F. A. P. Tolley, D. V. Plant, “Electrical, thermal and optomechanical packaging of large 2D optoelectronic device arrays for free-space optical interconnects,” J. Opt. A. 1, 267–271 (1996). [CrossRef]
  15. B. Robertson, Y. Liu, G. C. Boisset, M. R. Tagizadeh, D. V. Plant, “In-situ interferometric alignment systems for the assembly of microchannel relay systems,” Appl. Opt. 37, 9253–9260 (1998).
  16. J. Jahns, “Diffractive optical elements for optical computers,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, Boston, 1994), Chap. 6, pp. 137–167.
  17. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. D’Asaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-Gb/s two-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8µm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996). [CrossRef]
  18. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited