## Signed-Negabinary-Arithmetic-Based Optical Computing by Use of a Single Liquid-Crystal-Display Panel

Applied Optics, Vol. 41, Issue 8, pp. 1556-1564 (2002)

http://dx.doi.org/10.1364/AO.41.001556

Acrobat PDF (200 KB)

### Abstract

Based on the negabinary number representation, parallel one-step arithmetic operations (that is, addition and subtraction), logical operations, and matrix-vector multiplication on data have been optically implemented, by use of a two-dimensional spatial-encoding technique. For addition and subtraction, one of the operands in decimal form is converted into the unsigned negabinary form, whereas the other decimal number is represented in the signed negabinary form. The result of operation is obtained in the mixed negabinary form and is converted back into decimal. Matrix-vector multiplication for unsigned negabinary numbers is achieved through the convolution technique. Both of the operands for logical operation are converted to their signed negabinary forms. All operations are implemented by use of a unique optical architecture. The use of a single liquid-crystal-display panel to spatially encode the input data, operational kernels, and decoding masks have simplified the architecture as well as reduced the cost and complexity.

© 2002 Optical Society of America

**OCIS Codes**

(200.1130) Optics in computing : Algebraic optical processing

(200.4560) Optics in computing : Optical data processing

(200.4660) Optics in computing : Optical logic

(200.4860) Optics in computing : Optical vector-matrix systems

**Citation**

Asit K. Datta and Soumika Munshi, "Signed-Negabinary-Arithmetic-Based Optical Computing by Use of a Single Liquid-Crystal-Display Panel," Appl. Opt. **41**, 1556-1564 (2002)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-8-1556

Sort: Year | Journal | Reset

### References

- K. Hwang, Computer Arithmetic: Principles, Architecture and Design (Wiley, New York, 1979).
- E. Swartzlander, “Digital optical arithmetic,” Appl. Opt. 25, 3021–3032 (1986).
- A. Kostrzewski, D. H. Kim, Y. Li, and G. Eichmann, “Fast hybrid parallel carry-ahead adder,” Opt. Lett. 15, 915–917 (1990).
- A. K. Datta and M. Seth, “Parallel arithmetic operations in an optical architecture using a modified iterative technique,” Opt. Comm. 115, 245–250 (1995).
- A. S. P. Kozaitis, “Higher-ordered rules for symbolic substitution,” Opt. Comm. 65, 339–342 (1988).
- G. Eichmann, A. Kostrzewski, D. H. Kim, and Y. Li, “Optical higher-order symbolic recognition,” Appl. Opt. 29, 2135–2147 (1990).
- R. P. Bocker, B. L. Drake, M. E. Lasher, and T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986).
- Y. Li and G. Eichmann, “Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements,” Appl. Opt. 26, 2328–2333 (1987).
- Y. Wu, Z. Zhang, L. Liu, and Z. Wang, “Arithmetic operation using binary encoding modified-signed-digit system,” Opt. Comm. 100, 53–58 (1993).
- K. W. Wong and L. M. Cheng, “Optical modified signed-digit addition based on binary logical operations,” Opt. Laser Technol. 26, 213–217 (1994).
- H. Huang, M. Itoh, and T. Yatagai, “Modified signed-digit arithmetic based on redundant bit representation,” Appl. Opt. 33, 6146–6156 (1994).
- S. Zhou, S. Campbell, P. Yeh, and H. K. Liu, “Two-stage modified signed-digit optical computing by spatial data encoding and polarization multiplexing,” Appl. Opt. 34, 793–802 (1995).
- S. Zhang and M. A. Karim, “Programmable modified-signed-digit addition module based on binary logic gates,” Opt. Eng. 38, 456–461 (1999).
- A. K. Datta, A. Basuray, and S. Mukhopadhyay, “Arithmetic operations in optical computations using a modified trinary number system,” Opt. Lett. 14, 426–428 (1989).
- M. S. Alam, M. A. Karim, A. A. S. Awwal, and J. J. Westerkamp, “Optical processing based on conditional higher-order trinary modified signed-digit symbolic substitution,” Appl. Opt. 31, 5614–5621 (1992).
- M. S. Alam, “Parallel optical computing using recoded trinary signed-digit numbers,” Appl. Opt. 33, 4392–4397 (1994).
- M. S. Alam, K. Jemili, and M. A. Karim, “Optical higher-order quaternary signed-digit arithmetic,” Opt. Eng. 33, 3419–3426 (1994).
- A. Huang, Y. Tsunoda, J. W. Goodman, and S. Ishihara, “Optical computation using residue arithmetic,” Appl. Opt. 18, 149–162 (1979).
- M. L. Heinrich, R. A. Athale, and M. W. Huang, “Numerical optical computing in the residue number system with outer-product look-up tables,” Opt. Lett. 14, 847–849 (1989).
- S. Mukhopadhyay, A. Basuray, and A. K. Datta, “New technique of arithmetic operation using positional residue system,” App. Opt. 29, 2981–2893 (1990).
- S. Zhang and M. A. Karim, “Optical arithmetic processing using improved redundant binary algorithms,” Opt. Eng. 38, 415–421 (1999).
- A. K. Cherri, “Signed-digit arithmetic for optical computing: digit grouping and pixel assignment for spatial encoding,” Opt. Eng. 38, 422–431 (1999).
- M. S. Alam, “Parallel optoelectronic trinary signed-digit division,” Opt. Eng. 38, 441–448 (1999).
- C. Perlee and D. Casasent, “Negative base encoding in optical linear algebra processors,” Appl. Opt. 25, 168–169 (1986).
- G. Li, L. Liu, L. Shao, and Z. Wang, “Negative binary arithmetic algorithms for digital parallel optical computation,” Opt. Lett. 19, 1337–1339 (1994).
- G. Li, L. Liu, Y. Yin, and J. Hua, “Parallel optical negabinary arithmetic based on logic operations,” Appl. Opt. 36, 1011–1016 (1997).
- G. Li, F. Qian, H. Ruan, and L. Liu, “Parallel optical negabinary signed-digit computing: algorithm and optical implementation,” Opt. Eng. 38, 403–414 (1999).
- J. Tanida and Y. Ichioka, “Optical logic array processor using shadowgrams,” J. Opt. Soc. Am. 73, 800–809 (1983).
- J. Tanida, M. Iwata, and Y. Ichioka, “Extended coding for optical array logic,” Appl. Opt. 33, 3363–3369 (1994).
- A. K. Datta and M. Seth, “Multi-input optical parallel logic processing with the shadow-casting technique,” App. Opt. 33, 8146–8152 (1994).
- D. Psaltis, D. Casasent, D. Neft, and M. Carlotto, “Accurate numerical computation by optical convolution,” in Optical Computing II, W. T. Rhodes, ed., Proc. SPIE 232, 151–156 (1980).
- S. Cartwright, “New optical matrix-vector multiplier,” Appl. Opt. 23, 1683–1684 (1984).
- P. S. Guilfoyle, “Systolic acousto-optic binary convolver,” Opt. Eng. 23, 20–25 (1984).
- S. Cartwright and S. C. Gustafson, “Convolver based optical systolic processing architecture,” Opt. Eng. 24, 59–62 (1985).
- G. Li, L. Liu, H. Cheng, and X. Yan, “Parallel optical quaternary signed-digit multiplication and its use for matrix-vector operation,” Optik (Stuttgart) 107, 165–172 (1998).
- H. Huang, M. Itoh, and T. Yatagai, “Optical scalable parallel modified signed-digit algorithms for large-scale array addition and multiplication using digit-decomposition-plane representation,” Opt. Eng. 38, 432–440 (1999).
- S. Bandyopadhyay, A. K. Datta, S. S. Bawa, A. M. Biradar, and S. Chandra, “Realization of digital optical matrix-vector multiplication,” J. Phys. D 28, 7–11 (1995).
- G. Li and L. Liu, “Complex-valued matrix-vector multiplication using twos complement representation,” Opt. Comm. 105, 161–166 (1994).
- G. Li and L. Liu, “Negabinary encoding for optical complex matrix operation,” Opt. Comm. 113, 15–19 (1994).
- L. Liu, G. Li, and Y. Yin, “Optical complex matrix-vector multiplication with negative binary inner products,” Opt. Lett. 19, 1759–1761 (1994).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.