OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 41, Iss. 8 — Mar. 10, 2002
  • pp: 1574–1583

Analytic performance analysis based on material properties for electroabsorptive asymmetric Fabry-Perot reflection modulators

Elsa Garmire  »View Author Affiliations


Applied Optics, Vol. 41, Issue 8, pp. 1574-1583 (2002)
http://dx.doi.org/10.1364/AO.41.001574


View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simple and accurate analytic expressions are provided for the maximum reflectivity and tolerances of an impedance-matched asymmetric Fabry-Perot used as a high-contrast spatial light modulator when electroabsorptive quantum wells provide loss modulation. When the device geometry is optimized, these expressions depend only on material properties. The maximum reflectivity depends only on the fractional absorption change and is independent of the front-mirror reflectivity. The most important tolerance is on the flatness of crystal growth; the fractional-length tolerance is proportional to the absorption coefficient. These formulas agree with experimentally reported results from multiple-quantum-well modulators and previous numerical analyses; they are useful for quickly predicting optimized performance of possible new materials. The normally on and normally off geometries are compared. The effect of finite back-mirror reflectivity is clarified. Deviations from impedance match enable increased reflectance difference at the expense of contrast ratio, an approach which is evaluated as a function of material parameters.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.2230) Diffraction and gratings : Fabry-Perot
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.4320) Optical devices : Nonlinear optical devices
(230.6120) Optical devices : Spatial light modulators
(350.4600) Other areas of optics : Optical engineering

History
Original Manuscript: June 4, 2001
Published: March 10, 2002

Citation
Elsa Garmire, "Analytic performance analysis based on material properties for electroabsorptive asymmetric Fabry-Perot reflection modulators," Appl. Opt. 41, 1574-1583 (2002)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-8-1574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Zouganeli, P. J. Stevens, D. Atkinson, G. Parry, “Design trade-offs and evaluation of the performance attainable by GaAs-Al0.3Ga0.7As asymmetric Fabry-Perot modulators,” IEEE J. Quantum Electron. 31, 927–943 (1995). [CrossRef]
  2. P. Zouganeli, G. Parry, “Evaluation of the tolerance of asymmetric Fabry-Perot modulators with respect to realistic operating conditions,” IEEE J. Quantum Electron. 31, 1140–1151 (1995). [CrossRef]
  3. K.-K. Law, J. L. Merz, L. A. Coldren, “The effect of layer thickness variations on the performance of asymmetric Fabry-Perot reflection modulators,” J. Appl. Phys. 72, 855–869 (1992). [CrossRef]
  4. B. Pezeshki, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Appl. Phys. Lett. 57, 1491–1493 (1990). [CrossRef]
  5. B. Pezeshki, D. Thomas, J. S. Harris, “Optimization of reflection electroabsorption modulators,” in Physical concepts of materials for novel optoelectronic device applications II: Device physics and applications, M. Razeghi, ed., Proc. SPIE1362, 559–565 (1991). [CrossRef]
  6. M. G. Xu, B. D. Nener, J. M. Dell, “Design of externally tuned asymmetric fibre Fabry-Perot electroabsorption optical modulators,” IEE Proc. Optoelectron. 145, 344–352 (1998). [CrossRef]
  7. C. C. Barron, C. J. Mahon, B. J. Thibeault, L. A. Coldren, “Design, fabrication and characterization of high-speed asymmetric Fabry-Perot modulators for optical interconnect applications,” Opt. Quantum Electron. 25, S885–S898 (1993). [CrossRef]
  8. R. I. Killey, M. Whitehead, P. N. Stavrinou, G. Parry, C. C. Button, “Design of InGaAsP multiple quantum-well Fabry-Perot modulators for soliton control,” J. Lightwave Technol. 17, 1408–1413 (1999). [CrossRef]
  9. See, for example, E. Garmire, “Criteria for optical bistability in lossy saturating Fabry-Perots,” IEEE J. Quantum Electron. 25, 289–295 (1989).
  10. K. W. Jelley, R. W. H. Englemann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs MQW Structures,” Appl. Phys. Lett. 55, 70–72 (1989). [CrossRef]
  11. G. Parry, M. Whitehead, P. Stevens, A. Rivers, P. Bartnes, D. Atkinson, “The design and application of III-V MQW optical modulators,” Phys. Scr. T35, 210 (1991). [CrossRef]
  12. B. Pezeshki, S. M. Lord, J. S. Harris, “Electroabsorptive modulators in InGaAs/AlGaAs,” Appl. Phys. Lett. 59, 888–890 (1991). [CrossRef]
  13. B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electroabsorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992). [CrossRef]
  14. H. Q. Hou, A. N. Cheng, H. H. Wieder, W. S. C. Chang, C. W. Tu, “Electroabsorption of InAlAs/InP strained MQW for 1.3 µm waveguide modulators,” Appl. Phys. Lett. 63, 1833–1835 (1993). [CrossRef]
  15. R. P. Leavitt, J. L. Bradshaw, J. T. Pham, “Superlattice-equivalent (In,Ga)As/(In,Al)As quantum wells with large Stark shifts in the 1.3 µm spectral region,” Appl. Phys. Lett. 66, 1803–1805 (1995). [CrossRef]
  16. M. K. Chin, W. S. C. Chang, “Electroabsorption properties of InGaAs/InAlAs MQW structures at 1.5 µm,” IEEE Photon. Technol. Lett. 6, 502–504 (1994). [CrossRef]
  17. M. G. Xu, T. A. Fisher, J. M. Dell, A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys. 84, 5761–5765 (1998). [CrossRef]
  18. K. Bacher, B. Pezeshki, S. M. Lord, J. S. Harris, “Molecular beam epitaxy growth of vertical cavity optical devices with in situ corrections,” Appl. Phys. Lett. 61, 1387–1391 (1992). [CrossRef]
  19. M. R. Ramadas, E. Garmire, A. K. Ghatak, K. Thygarajan, M. R. Shenoy, “Analysis of absorbing and leaky planar waveguides: a novel method,” Opt. Lett. 14, 376–378 (1989). [CrossRef] [PubMed]
  20. B. G. Kim, E. Garmire, “Comparison between the matrix method and the coupled-wave method in the analysis of Bragg reflector structures,” J. Opt. Soc. Am. A. 9, 132–136 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited