OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 11 — Apr. 10, 2003
  • pp: 1938–1946

Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging

Pietro Ferraro, Sergio De Nicola, Andrea Finizio, Giuseppe Coppola, Simonetta Grilli, Carlo Magro, and Giovanni Pierattini  »View Author Affiliations


Applied Optics, Vol. 42, Issue 11, pp. 1938-1946 (2003)
http://dx.doi.org/10.1364/AO.42.001938


View Full Text Article

Acrobat PDF (3343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approach is proposed for removing the wave front curvature introduced by the microscope imaging objective in digital holography, which otherwise hinders the phase contrast imaging at reconstruction planes. The unwanted curvature is compensated by evaluating a correcting wave front at the hologram plane with no need for knowledge of the optical parameters, focal length of the imaging lens, or distances in the setup. Most importantly it is shown that a correction effect can be obtained at all reconstruction planes. Three different methods have been applied to evaluate the correction wave front and the methods are discussed in detail. The proposed approach is demonstrated by applying digital holography as a method of coherent microscopy for imaging amplitude and phase contrast of microstructures.

© 2003 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(090.1760) Holography : Computer holography
(100.2650) Image processing : Fringe analysis
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(180.3170) Microscopy : Interference microscopy

Citation
Pietro Ferraro, Sergio De Nicola, Andrea Finizio, Giuseppe Coppola, Simonetta Grilli, Carlo Magro, and Giovanni Pierattini, "Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging," Appl. Opt. 42, 1938-1946 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-11-1938


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. D. Duncan and T. C. Poon, “Gaussian beam analysis of optical scanning holography,” J. Opt. Soc. Am. A 9, 229–233 (1992).
  2. T. C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338–1344 (1995).
  3. U. Schanrs and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
  4. U. Schanrs, “Direct phase determination in holographic interferometry using digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
  5. U. Schanrs and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
  6. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  7. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
  8. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 23, 1268–1270 (1997).
  9. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).
  10. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
  11. M. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305–310 (2000).
  12. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695 (1999).
  13. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
  14. G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035–1041 (2001).
  15. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1633 (2000).
  16. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography,” Opt. Lasers Eng. 37, 331–340 (2002).
  17. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001).
  18. S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. 26, 974–977 (2001).
  19. S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Experimental demonstration of the longitudinal phase-shift in digital holography,” Opt. Eng. (to be published).
  20. X. Lei, P. Xiaoyuan, A. K. Asundi, and M. Jianmin, “Hybrid holographic microscope for interferometric measurement of microstructures,” Opt. Eng. 40, 2533–2539 (2001).
  21. X. Lei, P. Xiaoyuan, M. Jianmin, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046–5052 (2001).
  22. S. Seebacker, W. Osten, T. Baumbach, W. Juptner, “The determination of materials parameters of microcomponents using digital holography,” Opt. Lasers Eng. 36, 103–126 (2001).
  23. W. P. Jueptner, P. Werner, M. Kujawinska, W. Osten, L. A. Salbut, and S. Seebacher, “Combined measurement of silicon microbeams by grating interferometry and digital holography,” International Conference on Applied Optical Metrology, P. K. Rastogi and F. Gyimesi, eds., Proc. SPIE 3407, 348–357 (1998).
  24. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, S. Grilli, M. Iodice, C. Magro, and G. Pierattini, “Digital holography for characterization and testing of MEMS structures,” in Proceedings of IEEE/LEOS International Conference on Optical MEMS 2002, (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 125–126.
  25. J. Gu and F. Chen, “Fast Fourier transform, iteration, and least-squares fit demodulation image processing for analysis of single-carrier fringe pattern,” J. Opt. Soc. Am. A 12, 2159–2165 (1995).
  26. P. Ferraro, S. De Nicola, A. Finizio, S. Grilli, and G. Pierattini, “Digital holographic interferometry for characterization of transparent materials,” in Optical Measurement Systems for Industrial Inspection II: Applications in Production Engineering, R. Hoefling, W. P. Jueptner, and M. Kujawinska, eds., Proc. SPIE 4399, 9–16 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited