OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 13 — May. 1, 2003
  • pp: 2251–2256

Chemical Method to Increase Extreme Ultraviolet Microchannel-Plate Quantum Efficiency. II. Analysis and Optimization

Richelieu Hemphill and Jerry Edelstein  »View Author Affiliations


Applied Optics, Vol. 42, Issue 13, pp. 2251-2256 (2003)
http://dx.doi.org/10.1364/AO.42.002251


View Full Text Article

Acrobat PDF (353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhancement of the extreme ultraviolet quantum detection efficiency (QDE) of microchannel plate (MCP) detectors by use of a wet chemical method is examined. It is shown that the chemical process of ion exchange, in addition to physical processes that increase surface roughness and decrease surface density, augments the secondary electron emission coefficient, which in turn increases the quantum detection efficiency of the input MCP. The method has been demonstrated with nitric acid, acetic acid, or water used as the active reactant. By monitoring and optimizing the ion-exchange process, we achieved a 2.6–4.4 increase in the MCP QDE from 1216 to 304 Å, respectively, with an absolute QDE of approximately 50% at 304 Å.

© 2003 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5250) Detectors : Photomultipliers
(040.7190) Detectors : Ultraviolet
(040.7480) Detectors : X-rays, soft x-rays, extreme ultraviolet (EUV)
(160.2750) Materials : Glass and other amorphous materials
(160.6030) Materials : Silica

Citation
Richelieu Hemphill and Jerry Edelstein, "Chemical Method to Increase Extreme Ultraviolet Microchannel-Plate Quantum Efficiency. II. Analysis and Optimization," Appl. Opt. 42, 2251-2256 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-13-2251


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Hemphill, J. Edelstein, and D. Rogers, “Chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” Appl. Opt. 36, 1421–1426 (1997).
  2. R. Hemphill and J. Edelstein, “Analysis of a chemical method to increase extreme ultraviolet microchannel-plate quantum efficiency,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades and O. H. W. Siegmund, eds. Proc. SPIE 4854, 577–582 (2003).
  3. G. W. Fraser, M. A. Barstow, J. F. Pearson, M. J. Whiteley, and M. Lewis, “The soft x-ray detection efficiency of coated microchannel plates,” Nucl. Instrum. Methods 224, 272–286 (1984).
  4. J. J. Fijol, A. M. Then, and G. W. Tasker, “Secondary electron yield of SiO2 and Si3N4 films for continuous dynode electron multipliers,” Appl. Surf. Sci. 48/49, 464–471 (1991).
  5. A. M. Then and C. G. Pantano, “Formation and behavior of surface layers on electron emission glasses,” J. Non-Cryst. Solids 120, 178–187 (1990).
  6. K. K. Sidorin, A. L. Shakhmin, A. M. Tyutikov, and V. N. Makhov, “Electron structure of lead-silicate glasses,” Opt. Spectrosc. 72, 89–93 (1992).
  7. A. M. Tyutikov, N. V. Lobanova, M. N. Toiseva, V. N. Polukhin, N. V. Koroley, and V. E. Yakovlev, “Connection between the electron-emission properties of lead silicate glasses and their composition and structure,” Fiz. Khim. 5, 628–631 (1979).
  8. A. M. Tyutikov and A. L. Shakhmin, “Secondary electron emission from lead silicate glasses considered from the point of view of the plasmon theory of emission,” Sov. Phys. Solid State 34, 1549–1552 (1992).
  9. A. G. Revesz, “Noncrystalline silicon dioxide films on silicon: a review,” J. Non-Cryst. Solids 11, 309–330 (1973).
  10. M. Schwartz and R. J. Berry, “Ab initio investigation of substituent effects on bond dissociation ethalpies in siloxanes and silanols,” J. Mol. Struct. 538, 9–17 (2001).
  11. D. J. Lucas and L. A. Curtiss, “Theoretical study of the silicon-oxygen hydrides SiOHn (n = 0–4) and SiOHn+ (n = 0–5): dissociation energies, ionization energies, enthalpies of formation and proton affinities,” J. Chem. Phys. 99, 6697–6703 (1993).
  12. G. A. Ausman, Jr. and F. B. McLean, “Electron-hole pair creation energy in SiO2,” Appl. Phys. Lett. 26, 173–175 (1975).
  13. Y. Hayashi and K. Matsumoto, “Determination of surface silanol group on silicate glasses using static SIMS,” J. Ceram. Soc. Jpn. 100, 1038–1041 (1992).
  14. A. M. Tyutikov, M. N. Toiseva, V. N. Polukhin, N. V. Lobanova, and V. E. Yakovlev, “Effect of metal oxides on the properties of the emitting layer of a lead silicate glass,” Sov. J. Glass Phys. Chem. 7, 480–485 (1982).
  15. G. E. Hill, “Secondary electron emission and compositional studies on channel plate glass surfaces,” Adv. Electron. Electron. Phys. 40A, 153–165 (1976).
  16. G. T. Mearini, I. L. Krainsky, Y. X. Wang, J. A. Dayton, Jr., R. Rameshan, and M. F. Rose, “Fabrication of an electron multiplier utilizing diamond films,” Thin Solid Films 253, 151–156 (1994).
  17. T. L. Bekker, J. A. Dayton, Jr., A. S. Gilmour, Jr., I. L. Krainsky, M. F. Rose, R. Rameshan, D. File, and G. Mearini, “Observations of secondary electron emission from diamond films,” in Proceedings of IEEE International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), pp. 949–952.
  18. G. T. Mearini, I. L. Krainsky, and J. A. Dayton, Jr., “Stable secondary electron emission from chemical vapor deposited diamond films coated with alkali-halides,” Appl. Phys. Lett. 66, 242–244 (1995).
  19. S. Wood and J. R. Blachere, “Corrosion of lead glasses in acid media. I. Leaching kinetics,” J. Am. Ceram. Soc. 61, 287–292 (1978).
  20. S. Wood and J. R. Blachere, “Corrosion of lead glasses in acid media. II. Concentration profiles,” J. Am. Ceram. Soc. 61, 292–294 (1978).
  21. S. M. Budd, “The mechanisms of chemical reaction between silicate glass and attacking agents,” Phys. Chem. Glasses 2, 111–114 (1961).
  22. T. M. El-Shamy, “The rate determining step in the dealkalisation of silicate glasses,” Phys. Chem. Glasses 14, 18–19 (1973).
  23. S. Wood and J. R. Blachere, “Infrared reflectance spectra of lead glasses corroded in acid,” J. Am. Ceram. Soc. 59, 470–472 (1976).
  24. Photonis Imaging Senors, B.P. 520, Avenue Roger Roncier, 19106 Brive, France.
  25. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 78th ed.(CRC Press, Boca Raton, Fla., 1998).
  26. E. H. Eberhardt, “Parameters pertaining to microchannel plates and microchannel plate devices,” Tech. Note 127 (ITT Electro-Optical Products Division, Fort Wayne, Ind., 1980).
  27. W. M. Mularie, W. F. Furth, and A. R. C. Westwood, “Influence of surface potential on the kinetics of glass reactions with aqueous solutions,” J. Mater. Sci. 14, 2659–2664 (1979).
  28. A. N. Brunton, G. W. Fraser, J. E. Lees, and I. C. E. Tureu, “Metrology and modeling of microchannel plate x-ray optics,” Appl. Opt. 36, 5461–5470 (1997).
  29. O. H. W. Siegmund, E. Everman, J. Vallerga, and M. Lampton, “Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates,” in Optoelectronic Technologies for Remote Sensing from Space, J. S. Seeley and S. C. Bowyer, eds., Proc. SPIE 868, 18–24 (1988).
  30. N. P. Bannister, J. S. Lapington, M. A. Barstow, G. W. Fraser, B. S. Sanderson, J. A. Tandy, J. F. Pearson, and J. E. Spragg, “A high resolution imaging microchannel plate detector for EUV spectrometry,” in X-Ray and Gamma-Ray Instrumentation for Astronomy XI, K. A. Flanagan, O. H. Konov, and V. I. Pustovoy, eds., Proc. SPIE 4140, 199–210 (2000).
  31. G. W. Fraser, J. F. Pearson, and J. E. Lees, “Evaluation of long life (L2) microchannel plates for x-ray photon counting,” IEEE Trans. Nucl. Sci. 35, 529– 533, (1988).
  32. Burle Industries, 1000 New Holland Avenue, Lancaster, Pa. 17601–5688.
  33. O. H. W. Siegmund, “FUSE flight detector test summary,” presented at the FUSE Detector Comprehensive Design Review, Space Sciences Laboratory, University of California, Berkeley, Berkeley, Calif., 18 April 1996.
  34. D. J. Sahnow, “The FUSE detectors: on orbit use and lessons learned,” in Future EUV/UV Space Astrophysics Missions and Instrumentation, J. C. Blades and O. H. W. Siegmund, eds., Proc. SPIE 4854, 610–619 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited