OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2647–2652

Boundary layer scattering measurements with a charge-coupled device camera lidar

John E. Barnes, Sebastian Bronner, Robert Beck, and N. C. Parikh  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2647-2652 (2003)
http://dx.doi.org/10.1364/AO.42.002647


View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A CCD-based bistatic lidar (CLidar) system has been developed and constructed to measure scattering in the atmospheric boundary layer. The system uses a CCD camera, wide-angle optics, and a laser. Imaging a vertical laser beam from the side allows high-altitude resolution in the boundary layer all the way to the ground. The dynamic range needed for the molecular signal is several orders of magnitude in the standard monostatic method, but only approximately 1 order of magnitude with the CLidar method. Other advantages of the Clidar method include low cost and simplicity. Observations at Mauna Loa Observatory, Hawaii, show excellent agreement with the modeled molecular-scattering signal. The scattering depends on angle (altitude) and the polarization plane of the laser.

© 2003 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(010.3640) Atmospheric and oceanic optics : Lidar
(040.1520) Detectors : CCD, charge-coupled device
(290.1310) Scattering : Atmospheric scattering

History
Original Manuscript: September 11, 2002
Revised Manuscript: February 4, 2003
Published: May 20, 2003

Citation
John E. Barnes, Sebastian Bronner, Robert Beck, and N. C. Parikh, "Boundary layer scattering measurements with a charge-coupled device camera lidar," Appl. Opt. 42, 2647-2652 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  2. J. E. Barnes, D. J. Hofmann, “Variability in the stratospheric background aerosol over Mauna Loa Observatory,” Geophys. Res. Lett. 28, 2895–2898 (2001). [CrossRef]
  3. N. C. Parikh, J. A. Parikh, “Systematic tracking of boundary layer aerosols with laser radar,” Opt. Laser Technol. 34, (2), 177–185 (2002). [CrossRef]
  4. R. M. Measures, Laser Remote Sensing (Wiley Interscience, London, 1984).
  5. T. Halldorsson, J. Langerhoic, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978). [CrossRef] [PubMed]
  6. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979). [CrossRef] [PubMed]
  7. E. O. Hulbert, “Observations of a searchlight beam to an altitude of 28 kilometers,” J. Opt. Soc. Am. 27, 377–382 (1937). [CrossRef]
  8. L. Elterman, “A series of stratospheric temperature profiles obtained with the searchlight technique,” J. Geophys. Res. 58, 519–530 (1953). [CrossRef]
  9. J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 1. The remote sensing problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 229–235 (1982). [CrossRef]
  10. J. A. Reagan, D. M. Byrne, B. M. Herman, “Bistatic lidar: a tool for characterizing atmospheric particulates. Part 2. The inverse problem,” IEEE Trans. Geosci. Remote Sens. GE-20, 236–243 (1982). [CrossRef]
  11. K. Parameswaran, K. O. Rose, B. W. Krishna, “Aerosol characteristics from bistatic lidar observations,” J. Geophys. Res. 89D, 2541–2552 (1984). [CrossRef]
  12. P. C. S. Devera, P. E. Raj, “Remote sounding of aerosols in the lower atmosphere using a bistatic cw helium-neon lidar,” J. Aerosol Sci. 20(1), 37–44 (1989). [CrossRef]
  13. K. Meki, K. Yamaguchi, X. Li, Y. Saito, A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21, 1318–1320 (1996). [CrossRef] [PubMed]
  14. J. Lin, H. Mishima, Y. Kubota, F. Kobayashi, T. Kawahara, Y. Saito, A. Nomura, K. Yamaguchi, K. Morikawa, Rev. Laser Eng. “Bistatic imaging lidar measurements in the lower atmosphere,” 27, 827–834 (1999). [CrossRef]
  15. T. L. Anderson, J. A. Ogren, “Determining aerosol radiative properties using the TSI 3563 integrating nephelometer,” Aerosol Sci. Technol. 29, 57–69 (1988).
  16. Cimel Electronique Paris, France; www.cimel.fr .
  17. Micropulse lidar, Science and Engineering Services Inc., Burtonsville, Md.; http://www.sesi-md.com/mplinfo.htm .
  18. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited