OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2689–2694

Four-Channel Coarse-Wavelength Division Multiplexing Demultiplexer With a Modified Mach-Zehnder Interferometer Configuration on a Silicon-on-Insulator Waveguide

Yen-Juei Lin, San-Liang Lee, and Chiu-Lin Yao  »View Author Affiliations

Applied Optics, Vol. 42, Issue 15, pp. 2689-2694 (2003)

View Full Text Article

Acrobat PDF (1088 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coarse wavelength division multiplexer is designed on a silicon-on-insulator waveguide using the Mach–Zehnder interferometers with novel multimode interface–periodically segmented waveguide couplers and segmented waveguide arms. It is viable for metro and access applications, since it can be inexpensive and provide easy fabrication, compact size, and good output performance. As a design example, the channel spacing of the demultiplexer is chosen to be 24.5 nm for applications to the 10-Gigabit Ethernet. The simulation results show that the wide-passband demultiplexer can have insertion loss less than 2.3 dB and crosstalk better than 18 dB.

© 2003 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

Yen-Juei Lin, San-Liang Lee, and Chiu-Lin Yao, "Four-Channel Coarse-Wavelength Division Multiplexing Demultiplexer With a Modified Mach-Zehnder Interferometer Configuration on a Silicon-on-Insulator Waveguide," Appl. Opt. 42, 2689-2694 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. L. A. Buckman, B. E. Lemoff, A. J. Schmit, R. P. Tella, and W. Gong, “Demonstration of a small-form-factor WWDM transceiver module for 10-Gb/s local area networks,” IEEE Photon. Technol. Lett. 14, 702–704 (2002).
  2. Y. Hibino, F. Hanawa, H. Nakagome, M. Ishii, and N. Takato, “High reliability optical splitters composed of silica-based planar lightwave circuits,” J. Lightwave Technol. 13, 1728–1735 (1995).
  3. B. H. Verbeek, G. H. Henry, and N. A. Olsson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol. 6, 1011–1015 (1988).
  4. M. Kuznetsov, “Cascaded coupler Mach–Zehnder channel dropping filters for wavelength-division-multiplexed optical systems,” J. Lightwave Technol. 12, 226–230 (1994).
  5. H. H. Yaffe, C. H. Henry, M. R. Serbin, and L. G. Cohen, “Resonant couplers acting as add-drop filters made with silica-on-silicon waveguide technology,” J. Lightwave Technol. 12, 1010–1014 (1994).
  6. C. Kostrzewa and K. Petermann, “Bandwidth optimization of optical add/drop multiplexers using cascaded couplers and Mach–Zehnder sections,” IEEE Photon. Technol. Lett. 7, 902–904 (1995).
  7. B. J. Offrein, G. L. Bona, F. Horst, H. W. M. Salemink, R. Beyeler, and R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999).
  8. T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, and P. R. Routley, “0.15 dB/cm loss in unibond SOI waveguides,” Electron. Lett. 35, 977–978 (1999).
  9. M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol. 17, 243–248 (1999).
  10. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
  11. N. S. Lagali, M. R. Paiam, and R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photon. Technol. Lett. 11, 665–667 (1999).
  12. N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach–Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
  13. T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, “Silica-based 2 × 2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. 35, 2031–2033 (1999).
  14. D. Ortega, R. M. De La Rue, and J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol. 16, 284–290 (1998).
  15. R. Scarmozzino and R. M. Osgood, “Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A. 8, 724–731 (1991).
  16. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
  17. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
  18. P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 940–942 (1997).
  19. J. Aarnio, P. Heimala, M. D. Giudice, and F. Bruno, “Birefringence control and dispersion characteristics of silicon oxynitride optical waveguides,” Electron. Lett. 27, 2317–2318 (1991).
  20. K. Jinguji and M. Kawachi, “Synthesis of coherent two-port lattice-form optical delay-line circuit,” J. Lightwave Technol. 13, 73–82 (1995).
  21. Y. Inoue, M. Oguma, T. Kitoh, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, and T. Sugie, “Low-crosstalk 4-channel coarse WDM filter using silica-based planar-lightwave-circuit,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 75–76.
  22. K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18, 252–259 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited