OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2695–2701

Implication of rapid thermal annealing-induced cracks on the performance of multiple-quantum-well laser diodes

Hoshin H. Yee and Chih-Ping Yu  »View Author Affiliations

Applied Optics, Vol. 42, Issue 15, pp. 2695-2701 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (879 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the effects of rapid thermal annealing (RTA)-induced cracks on the diode performance fabricated with GaAs-AlGaAs microstructures. These effects were examined and characterized after quantum-well intermixing within an epitaxial structure capped by either SiO2 or SrF2 layers. The results show clearly that the density of surface cracks strongly depends on the atomic interdiffusion between the well and the barrier layers and on the quality of the dielectric caps as well. Moreover, surface-crack correlation with the RTA process and dielectric deposition parameters, and the cracking effects on diode performance were observed and analyzed in detail. The results demonstrate that diode characteristics can be greatly improved by good surface morphology. Most importantly, we explored an effective way of reducing the density of RTA-induced cracks for the dielectrics grown by plasma-enhanced chemical vapor deposition, which was beneficial for dielectric-cap quantum-well disordering.

© 2003 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.6810) Lasers and laser optics : Thermal effects
(270.3430) Quantum optics : Laser theory
(310.1860) Thin films : Deposition and fabrication

Original Manuscript: June 6, 2002
Revised Manuscript: November 20, 2002
Published: May 20, 2003

Hoshin H. Yee and Chih-Ping Yu, "Implication of rapid thermal annealing-induced cracks on the performance of multiple-quantum-well laser diodes," Appl. Opt. 42, 2695-2701 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Deppe, N. Holonyak, W. E. Plano, V. M. Robbins, J. M. Dallesasse, K. C. Hsieh, J. E. Baker, “Impurity diffusion and layer interdiffusion in AlxGa1–xAs-GaAs heterostructures,” J. Appl. Phys. 64, 1838–1844 (1988). [CrossRef]
  2. E. S. Koteles, B. Elman, P. Melman, J. Y. Chi, C. A. Armiento, “Quantum well shape modification using vacancy generation and rapid thermal annealing,” Opt. Quantum Electron. 23, S779–S787 (1991). [CrossRef]
  3. J. H. Teng, S. J. Chua, Z. H. Zhang, Y. H. Huang, G. Li, Z. J. Wang, “Dual-wavelength laser source monolithically integrated with Y-junction coupler and isolator using quantum-well intermixing,” IEEE Photon. Technol. Lett. 12, 1310–1312 (2000). [CrossRef]
  4. J. Werner, T. P. Lee, E. Kapon, E. Colas, N. G. Stoffel, S. A. Schwarz, L. C. Schwartz, N. C. Andreadakis, “Single and double quantum well lasers with a monolithically integrated passive section,” Appl. Phys. Lett. 57, 810–812 (1990). [CrossRef]
  5. T. Hirata, M. Maeda, M. Suehiro, H. Hosomatsu, “Fabrication and characteristics of GaAs-AlGaAs tunable laser diodes with DBR and phase-control sections integrated by compositional disordering of a quantum well,” IEEE J. Quantum Electron. 27, 1609–1615 (1991). [CrossRef]
  6. H. Ribot, K. W. Lee, R. J. Simes, R. H. Yan, L. A. Coldren, “Disordering of GaAs/AlGaAs multiple quantum well structures by thermal annealing for monolithic integration of laser and phase modulator,” Appl. Phys. Lett. 55, 672–674 (1989). [CrossRef]
  7. H. H. Yee, S. G. Ayling, R. M. De La Rue, B. Vogele, Y. P. Song, “Fabrication of high-performance extended-cavity double-quantum-well lasers with integrated passive sections,” IEE Proc. Optoelectron. 143, 94–100 (1996). [CrossRef]
  8. J. Ralston, G. W. Wicks, L. F. Eastman, B. C. DeCooman, C. B. Carter, “Defect structure and intermixing of ion-implanted AlxGa1–xAs-GaAs superlattices,” J. Appl. Phys. 59, 120–123 (1986). [CrossRef]
  9. I. Gontijo, T. Krauss, J. H. Marsh, R. M. De La Rue, “Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 30, 1189–1195 (1994). [CrossRef]
  10. K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).
  11. I. Harrison, “Ga-Al interdiffusion in intrinsic GaAs–AlAs superlattices,” in Properties of GaAs, Electronic Materials Information Service Datareview Series, No. 2, 2nd ed. (Inspec. IEE, London, 1990).
  12. B. S. Ooi, Phosistor Technologies Inc., Livermore, Calif. (personal communication, 1997).
  13. P. M. Petroff, R. C. Miller, A. C. Gossard, W. Wiegmann, “Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 44, 217–219 (1984). [CrossRef]
  14. E. Morita, J. Kosahara, S. Kawado, “Transmission electron microscopic observation of microdefects in Zn+-implanted GaAs,” Jpn. J. Appl. Phys. 24, 1274–1281 (1985). [CrossRef]
  15. H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Sec. 7–7.
  16. C. H. Henry, R. A. Logan, F. R. Merritt, “The effect of surface recombination on current in AlxGa1–xAs heterojunctions,” J. Appl. Phys. 49, 3530–3542 (1978). [CrossRef]
  17. P. D. Wright, W. B. Joyce, D. C. Craft, “Electrical derivative characteristics of InGaAsP buried heterostructure lasers,” J. Appl. Phys. 53, 1364–1372 (1982). [CrossRef]
  18. E. V. K. Rao, A. Hamoudi, Ph. Krauz, M. Juhel, H. Thibierge, “New encapsulant source for III–V quantum well disordering,” Appl. Phys. Lett. 66, 472–474 (1995). [CrossRef]
  19. W. R. Runyan, K. E. Bean, Semiconductor Integrated Circuit Processing Technology (Addison-Wesley, Reading, Mass., 1990), Sec. 4-6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited