OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2724–2729

Optical near-field Raman imaging with subdiffraction resolution

Pietro G. Gucciardi, Sebastiano Trusso, Cirino Vasi, Salvatore Patanè, and Maria Allegrini  »View Author Affiliations

Applied Optics, Vol. 42, Issue 15, pp. 2724-2729 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report optical near-field Raman imaging with subdiffraction resolution (∼120 nm) without field enhancement effects. Chemical discrimination on tetracyanoquinodimethane organic thin films showing localized salt complexes is accomplished by detailed Raman maps. Acquisition times that are much shorter than previously reported are due to the high Raman efficiency of the materials and to a careful collection and detection of the optical signals in our near-field Raman spectrometer.

© 2003 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(300.0300) Spectroscopy : Spectroscopy
(300.6450) Spectroscopy : Spectroscopy, Raman

Original Manuscript: September 17, 2002
Revised Manuscript: January 20, 2003
Published: May 20, 2003

Pietro G. Gucciardi, Sebastiano Trusso, Cirino Vasi, Salvatore Patanè, and Maria Allegrini, "Optical near-field Raman imaging with subdiffraction resolution," Appl. Opt. 42, 2724-2729 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984). [CrossRef]
  2. A. Lewis, M. Isaacson, A. Harootunian, A. Muray, “Development of a 500-Å spatial resolution light microscope,” Ultramicroscopy 13, 227–232 (1984). [CrossRef]
  3. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1471 (1991). [CrossRef] [PubMed]
  4. E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418 (1873). [CrossRef]
  5. D. P. Tsai, A. Othonos, M. Moskovits, D. Uttamchandani, “Raman spectroscopy using a fiber optic probe with subwavelength aperture,” Appl. Phys. Lett. 64, 1768–1770 (1994). [CrossRef]
  6. C. L. Jahncke, M. A. Paesler, H. D. Hallen, “Raman imaging with near-field scanning optical microscopy,” Appl. Phys. Lett. 67, 2483–2485 (1995). [CrossRef]
  7. C. L. Jahncke, H. D. Hallen, M. A. Paesler, “Nano-Raman spectroscopy and imaging with near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579–586 (1996). [CrossRef]
  8. E. J. Ayars, H. D. Hallen, M. A. Paesler, “Electric field gradient effects in Raman spectroscopy,” Phys. Rev. Lett. 85, 4180–4183 (2000). [CrossRef] [PubMed]
  9. S. Webster, D. N. Batchelder, D. A. Smith, “Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy,” Appl. Phys. Lett. 72, 1478–1480 (1998). [CrossRef]
  10. S. Webster, D. A. Smith, D. N. Batchelder, “Raman microscopy using a scanning near-field optical probe,” Vib. Spectrosc. 18, 51–59 (1998). [CrossRef]
  11. A. C. Ferrari, J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon,” Phys. Rev. B 64, 075414–075426 (2001). [CrossRef]
  12. D. A. Smith, S. Webster, M. Ayad, S. D. Evans, D. N. Batchelder, “Development of a scanning near-field optical probe for localized Raman spectroscopy,” Ultramicroscopy 61, 247–252 (1995). [CrossRef]
  13. S. R. Emory, S. Nie, “Near-field surface-enhanced Raman spectroscopy on single silver nanoparticles,” Anal. Chem. 69, 2631–2635 (1997). [CrossRef]
  14. D. Ziesel, V. Deckert, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem. Phys. Lett. 283, 381–385 (1998). [CrossRef]
  15. R. M. Stöckle, V. Deckert, C. Fokas, D. Ziesel, R. Zenobi, “Sub-wavelength Raman spectroscopy on isolated silver islands,” Vib. Spectrosc. 22, 39–48 (2000). [CrossRef]
  16. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, F. Marquis-Weible, “Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips,” Appl. Opt. 37, 7289–7292 (1998). [CrossRef]
  17. R. M. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]
  18. V. Deckert, D. Ziesel, R. Zenobi, T. Vo-Dinh, “Near-field surface-enhanced Raman imaging of dye-labeled DNA with 100-nm resolution,” Anal. Chem. 70, 2646–2650 (1998). [CrossRef] [PubMed]
  19. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000). [CrossRef]
  20. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000). [CrossRef]
  21. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Near-field Raman scattering enhanced by a metallized tip,” Chem. Phys. Lett. 335, 369–374 (2001). [CrossRef]
  22. M. Futamata, A. Bruckbauer, “ATR-SNOM-Raman spectroscopy,” Chem. Phys. Lett. 341, 425–430 (2001). [CrossRef]
  23. P. G. Gucciardi, M. Labardi, S. Gennai, F. Lazzeri, M. Allegrini, “A versatile scanning near-field optical microscope for material science applications,” Rev. Sci. Instrum. 68, 3088–3092 (1997). [CrossRef]
  24. P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, M. Allegrini, “Nano-Raman imaging of CuTCNQ clusters in TCNQ thin films by scanning near-field optical microscopy,” Phys. Chem. 4, 2747–2753 (2002).
  25. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992). [CrossRef]
  26. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992). [CrossRef]
  27. K. Karrai, R. D. Grober, “Piezoelectric tip-sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995). [CrossRef]
  28. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, “Low voltage organic light emitting diodes featuring doped phtalocyanine as hole transport material,” Appl. Phys. Lett. 73, 729–731 (1998). [CrossRef]
  29. W. Gao, A. Kahn, “Controlled p-doping of zinc phtalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study,” Appl. Phys. Lett. 79, 4040–4042 (2001). [CrossRef]
  30. S. Liu, Y. Liu, P. Wu, D. Zhu, H. Tian, K. Chen, “Characterization and electrical property of molten-grown CuTCNQ film material,” Thin Solid Films 289, 300–305 (1996). [CrossRef]
  31. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997). [CrossRef]
  32. P. G. Gucciardi, M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79, 1543–1545 (2001). [CrossRef]
  33. K. D. Weston, J. A. DeAro, S. K. Buratto, “Near-field scanning optical microscopy in reflection: a study of far-field collection geometry effects,” Rev. Sci. Instrum. 67, 2924–2929 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited