OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 15 — May. 20, 2003
  • pp: 2767–2771

Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results

Frank E. Hoge, Paul E. Lyon, Robert N. Swift, James K. Yungel, Mark R. Abbott, Ricardo M. Letelier, and Wayne E. Esaias  »View Author Affiliations


Applied Optics, Vol. 42, Issue 15, pp. 2767-2771 (2003)
http://dx.doi.org/10.1364/AO.42.002767


View Full Text Article

Enhanced HTML    Acrobat PDF (1420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft contains spectral bands that allow retrieval of solar-induced phytoplankton chlorophyll fluorescence emission radiance. Concurrent airborne laser-induced (and water-Raman normalized) phytoplankton chlorophyll fluorescence data is used to successfully validate the MODIS chlorophyll fluorescence line height (FLH) retrievals within Gulf Stream, continental slope, shelf, and coastal waters of the Middle Atlantic Bight portion of the western North Atlantic Ocean for 11 March 2002. Over the entire ∼480-km flight line a correlation coefficient of r 2 = 0.85 results from regression of the airborne laser data against the MODIS FLH. It is also shown that the MODIS FLH product is not influenced by blue-absorbing chromophoric dissolved organic matter absorption. These regional results strongly suggest that the FLH methodology is equally valid within similar oceanic provinces of the global oceans.

© 2003 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6360) Spectroscopy : Spectroscopy, laser

History
Original Manuscript: September 23, 2002
Revised Manuscript: January 29, 2003
Published: May 20, 2003

Citation
Frank E. Hoge, Paul E. Lyon, Robert N. Swift, James K. Yungel, Mark R. Abbott, Ricardo M. Letelier, and Wayne E. Esaias, "Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne lidar results," Appl. Opt. 42, 2767-2771 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-15-2767


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Neville, J. F. R. Gower, “Passive remote sensing of phytoplankton via chlorophyll-alpha fluorescence,” J. Geophy. Res. 82, 3487–3493 (1977). [CrossRef]
  2. J. F. R. Gower, “Observations of in situ fluorescence of chlorophyll a in Saanich Inlet,” Boundary-Layer Meteorol. 18, 235–245 (1980). [CrossRef]
  3. J. F. R. Gower, G. A. Borstad, “Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer,” Int. J. Remote Sens. 11, 313–320 (1990). [CrossRef]
  4. R. M. Letelier, M. R. Abbott, “An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS),” Remote Sens. Environ. 58, 215–223 (1996). [CrossRef]
  5. J. F. R. Gower, R. Doerffer, G. A. Borstad., “Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS,” Int. J. Remote Sens. 20, 1771–1786 (1999). [CrossRef]
  6. A. Bricaud, A. Morel, V. Barale, “MERIS potential for ocean colour studies in the open ocean,” Int. J. Remote Sens. 20, 1757–1769 (1999). [CrossRef]
  7. J. L. Bezy, S. Delwart, M. Rast, “MERIS-A new generation of ocean-colour sensor onboard Envisat,” ESA Bull. 103, 48–56 (2000).
  8. A. M. Matthews, A. G. Duncan, R. G. Davison, “An assessment of validation techniques for estimating chlorophyll-alpha concentration from airborne multispectral imagery,” Inter. J. Remote Sens. 22, 429–447 (2001). [CrossRef]
  9. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999). [CrossRef]
  10. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999). [CrossRef]
  11. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106, 31129–31140 (2001). [CrossRef]
  12. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, C. R. Schirtzinger, “Next-generation NASA airborne oceanographic lidar system,” Appl. Opt. 40, 336–342 (2001). [CrossRef]
  13. W. Esaias, M. Abbott, I. Barton, O. Brown, J. Campbell, K. Carder, D. Clark, R. Evans, F. Hoge, H. Gordon, W. Balch, R. Letelier, P. Minnett, “An overview of MODIS capabilities for ocean science observations,” IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998). [CrossRef]
  14. H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979). [CrossRef] [PubMed]
  15. B. J. Topliss, “Optical measurements in the Sargasso Sea: solar-stimulated chlorophyll fluorescence,” Oceanolgy Acta 8, 263–270 (1985).
  16. B. J. Topliss, T. Platt, “Passive fluorescence and photosynthesis in the ocean: implications for remote sensing,” Deep-Sea Res. 33, 849–864 (1986). [CrossRef]
  17. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence measurements,” Appl. Opt. 37, 4744–4749 (1998). [CrossRef]
  18. F. E. Hoge, A. Vodacek, N. V. Blough, “Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements,” Limnol. Oceanogr. 38, 1394–1402 (1993). [CrossRef]
  19. F. E. Hoge, A. Vodacek, R. N. Swift, J. Y. Yungel, N. V. Blough, “Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements,” Appl. Opt. 34, 7032–7038 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited