OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 2940–2950

In vivo Quantification of Optical Contrast Agent Dynamics in Rat Tumors by Use of Diffuse Optical Spectroscopy with Magnetic Resonance Imaging Coregistration

David J. Cuccia, Frederic Bevilacqua, Anthony J. Durkin, Sean Merritt, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 2940-2950 (2003)
http://dx.doi.org/10.1364/AO.42.002940


View Full Text Article

Acrobat PDF (946 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a study of the dynamics of optical contrast agents indocyanine green (ICG) and methylene blue (MB) in an adenocarcinoma rat tumor model. Measurements are conducted with a combined frequency-domain and steady-state optical technique that facilitates rapid measurement of tissue absorption in the 650–1000-nm spectral region. Tumors were also imaged by use of contrast-enhanced magnetic resonance imaging (MRI) and coregistered with the location of the optical probe. The absolute concentrations of contrast agent, oxyhemoglobin, deoxyhemoglobin, and water are measured simultaneously each second for approximately 10 min. The differing tissue uptake kinetics of ICG and MB in these late-stage tumors arise from differences in their effective molecular weights. ICG, because of its binding to plasma proteins, behaves as a macromolecular contrast agent with a low vascular permeability. A compartmental model describing ICG dynamics is used to quantify physiologic parameters related to capillary permeability. In contrast, MB behaves as a small-molecular-weight contrast agent that leaks rapidly from the vasculature into the extravascular, extracellular space, and is sensitive to blood flow and the arterial input function.

© 2003 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

Citation
David J. Cuccia, Frederic Bevilacqua, Anthony J. Durkin, Sean Merritt, Bruce J. Tromberg, Gultekin Gulsen, Hon Yu, Jun Wang, and Orhan Nalcioglu, "In vivo Quantification of Optical Contrast Agent Dynamics in Rat Tumors by Use of Diffuse Optical Spectroscopy with Magnetic Resonance Imaging Coregistration," Appl. Opt. 42, 2940-2950 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-2940


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. S. Tofts, “Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,” J. Magn. Reson. Imag. 7, 91–101 (1997).
  2. D. J. Bornhop, C. H. Contag, K. Licha, and C. J. Murphy, “Advance in contrast agents, reporters, and detection,” J. Biomed. Opt. 6, 106–110 (2001).
  3. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
  4. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
  5. R. Springett, Y. Sakata, and D. T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green,” Phys. Med. Biol. 46, 2209–2225 (2001).
  6. J. M. Still, E. J. Law, K. G. Klavuhn, T. C. Island, and J. Z. Holtz, “Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial,” Burns 27, 364–371 (2001).
  7. H. B. Larsson, T. Fritz-Hansen, E. Rostrup, L. Sondergaard, P. Ring, and O. Henriksen, “Myocardial perfusion modeling using MRI,” Magn. Reson. Med. 35, 716–726 (1996).
  8. R. A. Weersink, J. E. Hayward, K. R. Diamond, and M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997).
  9. J. Griebel, N. A. Mayr, A. de Vries, M. V. Knopp, T. Gneiting, C. Kremser, M. Essig, H. Hawighorst, P. H. Lukas, and W. T. Yuh, “Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging,” J. Magn. Reson. Imag. 7(1), 111–119 (1997).
  10. M. Y. Su, J. C. Jao, and O. Nalcioglu, “Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI,” Magn. Reson. Med. 32, 714–724 (1994).
  11. R. K. Jain, “Transport of molecules across tumor vasculature,” Cancer Metastasis Rev. 6, 559–593 (1987).
  12. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, “Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
  13. S. Merritt, F. Bevilacqua, A. J. Durkin, D. J. Cuccia, R. Lanning, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu, “Monitoring tumor physiology using near-infrared spectroscopy and MRI coregistration,” Appl. Opt. 42, 2951–2959 (2003).
  14. J. Fishbaugh, “Retina: indocyanine green (ICG) angiography,” Insight 19(3), 30–32 (1994).
  15. L. A. Geddes, “Cardiac output measurement,” in The Biomedical Engineering Handbook (CRC Press, Boca Raton, Fla., 1995), pp. 1212–1213.
  16. M. S. Yates, C. J. Bowmer, and J. Emmerson, “The plasma clearance of indocyanine green in rats with acute renal failure: effect of dose and route of administration,” Biochem. Pharmacol. 32, 3109–3114 (1983).
  17. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
  18. D. J. Jakubowski, “Development of broadband quantitative tissue optical spectroscopy for the non-invasive characterization of breast disease,” (Beckman Laser Institute, University of California, Irvine, Irvine, Calif., 2002).
  19. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and H. M. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
  20. S. Prahl, “Tabulated molar extinction coefficient for methylene blue in water,” (1998), http://omlc.ogi.edu/spectra/mb/mb-water.html.
  21. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40, 575–583 (1976).
  22. M. K. Pugsley, V. Kalra, and S. Froebel-Wilson, “Protamine is a low molecular weight polycationic amine that produces actions on cardiac muscle,” Life Sci. 72(3), 293–305 (2002).
  23. J. F. Payen, J. P. Vuillez, B. Geoffray, J. L. Lafond, M. Comet, P. Stieglitz, and C. Jacquot, “Effects of preoperative intentional hemodilution on the extravasation rate of albumin and fluid,” Crit. Care Med. 25, 243–248 (1997).
  24. M. Y. Su, A. Muhler, X. Lao, and O. Nalcioglu, “Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights,” Magn. Reson. Med. 39, 259–269 (1998).
  25. N. E. Simpson, Z. He, and J. L. Evelhoch, “Deuterium NMR tissue perfusion measurements using the tracer uptake approach: I. Optimization of methods,” Magn. Reson. Med. 42(1), 42–52 (1999).
  26. M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. Imag. 9, 177–186 (1999).
  27. J. B. Fishkin, O. Coquoz, E. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
  28. D. L. Buckley, “Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI,” Magn. Reson. Med. 47, 601–606 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited