OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 16 — Jun. 1, 2003
  • pp: 3063–3072

Characterization of Spatial and Temporal Variations in the Optical Properties of Tissuelike Media with Diffuse Reflectance Imaging

Francesco Fabbri, Maria Angela Franceschini, and Sergio Fantini  »View Author Affiliations


Applied Optics, Vol. 42, Issue 16, pp. 3063-3072 (2003)
http://dx.doi.org/10.1364/AO.42.003063


View Full Text Article

Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a method to characterize spatial or temporal changes in the optical properties of turbid media using diffuse reflectance images acquired under broad-beam illumination conditions. We performed experiments on liquid phantoms whose absorption (μa) and reduced scattering (μs′) coefficients were representative of those of biological tissues in the near infrared. We found that the relative diffuse reflectance R depends on μa and μs′ only through the ratio μas′ and that dependence can be well described with an analytical expression previously reported in the literature [S. L. Jacques, Kluwer Academic Dordrecht (1996)]. We have found that this expression for R deviates from experimental values by no more than 8% for various illumination and detection angles within the range 0°–30°. Therefore, this analytical expression for R holds with good approximation even if the investigated medium presents curved or irregular surfaces. Using this expression, it is possible to translate spatial or temporal changes in the relative diffuse reflectance from a turbid medium into quantitative estimates of the corresponding changes of (μas′)1/2. In the case of media with optical properties similar to those of tissue in the near infrared, we found that the changes of μas′ should occur over a volume approximately 2 mm deep and 4 mm × 4 mm wide to apply this expression.

© 2003 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

Citation
Francesco Fabbri, Maria Angela Franceschini, and Sergio Fantini, "Characterization of Spatial and Temporal Variations in the Optical Properties of Tissuelike Media with Diffuse Reflectance Imaging," Appl. Opt. 42, 3063-3072 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-16-3063


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Grinvald, E. Lieke, R. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature 324, 361–364 (1986).
  2. D. Y. Ts’o, R. D. Frostig, E. Lieke, and A. Grinvald, “Functional organization of primate visual cortex revealed by high resolution optical imaging,” Science 249, 417–420 (1990).
  3. D. M. Rector, R. F. Rogers, J. S. Schwaber, R. M. Harper, and J. S. George, “Scattered-light imaging in vivo tracks fast and slow processes of neurophysiological activation,” Neouroimage 14, 977–994 (2001).
  4. M. M. Haglund, G. A. Ojeman, and D. W. Hochman, “Optical imaging of epileptiform and functional activity in human cerebral cortex,” Nature 358, 668–671 (1992).
  5. R. D. Frostig, “What does in vivo optical imaging tell us about the primary visual cortex in primates?” in Cerebral Cortex, A. Peters and K. S. Rockland eds. (Plenum, New York, 1994), Vol. 10, pp. 331–358.
  6. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov Jr., “In vivo imaging of tumors with protease-activated near infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
  7. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
  8. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenberg, K. Nikula, R. Pandey, R. Mayer, D. J. Hawrysz, and E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
  9. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
  10. R. Marchesini, S. Tomatis, C. Bartoli, A. Bono, C. Clemente, C. Cupeta, I. Del Prato, E. Pignoli, A. E. Sichirollo, and N. Cascinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions. III. CCD camera-based reflectance imaging,” Photochem. Photobiol. 62, 151–154 (1995).
  11. B. Farina, C. Bartoli, A. Bono, A. Colombo, M. Lualdi, G. Tragni, and R. Marchesini, “spectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits,” Phys. Med. Biol. 45, 1243–1254 (2000).
  12. L. O. Svaasand, L. T. Norvang, E. J. Fiskertrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine strains,” Lasers Med. Sci. 65, 55–65 (1994).
  13. L. O. Svaasand, T. Spott, J. B. Fishkin, T. Pham, B. J. Tromberg, and M. W. Berns, “ctance measurements of layered media with photon-density waves: a potential tool for evaluating deep burns and subcutaneous lesions,” Phys. Med. Biol. 44, 801–813 (1999).
  14. R. G. Giovanelli, “Reflection by semi-infinite diffusers,” Opt. Acta 2, 153–162 (1955).
  15. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. 21, 1–22 (1905).
  16. T. Burger, J. Kuhn, R. Caps, and J. Fricke, “Quantitative determination of the scattering and absorption coefficients from diffuse reflectance and transmittance measurements applied to pharmaceutical powders,” Appl. Spectrosc. 51, 309–317 (1997).
  17. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
  18. A. J. Welch, M. J. C. van Gemert, W. M. Star, and B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, New York, 1995), Chap. 2.
  19. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  21. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  22. T. Burger, H. J. Ploss, J. Kuhn, S. Ebel, and J. Fricke, “Diffuse reflectance and transmittance spectroscopy for the quantitative determination of scattering and absorption coefficients in quantitative powder analysis,” Appl. Spectrosc. 51, 1323– 1329 (1997).
  23. W. R. Blevin and W. J. Brown, “Total reflectance of opaque diffusers,” J. Opt. Soc. Am. 52, 1250–1255 (1962).
  24. G. Kortüm, Reflectance Spectroscopy: Principles, Methods, Applications (Springer-Verlag, New York 1969).
  25. B. J. Brinkworth, “On the theory of reflection by scattering and absorbing media,” J. Appl. Phys. Phys. D 4, 1105–1106 (1971).
  26. B. J. Brinkworth, “Interpretation of the Kubelka-Munk coefficients in reflection theory,” Appl. Opt. 11, 1434–1435 (1972).
  27. L. F. Gate, “Comparison of the photon diffusion model and Kubelka-Munk equation with the exact solution of the radiative transport equation,” Appl. Opt. 13, 236–238 (1974).
  28. K. Klier, “Absorption and scattering in turbid media,” J. Opt. Soc. Am. 62, 882–885 (1972).
  29. P. S. Mudgett and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt. 10, 1485–1502 (1971).
  30. W. F. Cheong, S. A. Prahl, and A. J. Welch “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
  31. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
  32. S. A. Prahl, “Light transport in tissue,” Ph.D. dissertation (University of Texas at Austin, Austin, Tex., 1988).
  33. S. L. Jacques, C. A. Alter, and S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  34. S. L. Jacques, “Diffuse reflectance from a semi-infinite medium” (1999), http://omlc.ogi.edu/news/may99/rd/index.html.
  35. S. L. Jacques, “Reflectance spectroscopy with optical fiber devices and transcutaneous bilirubinometers,” in Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, A. M. Verga Scheggi, S. Martellucci, A. N. Chester, and R. Pratesi eds. (Kluwer Academic, Netherlands, 1996), pp. 83–94.
  36. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
  37. R. R. Anderson, and J. A. Parrish “The optics of human skin,” J. Investig. Dermatol. 77, 13–19 (1981).
  38. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
  39. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nanometers,” Appl. Opt. 30, 4507–4514 (1991).
  40. C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, and S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt. 28, 2292–2296 (1989).
  41. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
  42. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues” (1996), http://omlc.ogi.edu/pubs/abs/cheong90a.html.
  43. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994).
  44. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, Bellingham, Wash., 1996).
  45. W. R. Blevin and W. J. Brown, “Effect of particle separation on the reflectance of semi-infinite diffusers,” J. Opt. Soc. Am. 51, 129–134 (1961).
  46. M. J. C. van Gemert and W. M. Star, “Relations between the Kubelka-Munk and the transport equation models for anisotropic scattering,” Lasers Life Sci. 1, 287–298 (1987).
  47. W. R. Blevin and W. J. Brown, “Light-scattering properties of pigment suspensions,” J. Opt. Soc. Am. 51, 975–982 (1961).
  48. J. Reichman, “Determination of absorption and scattering coefficients for nonhomogeneous media 1: theory,” Appl. Opt. 12, 1811–1815 (1973).
  49. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
  50. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
  51. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
  52. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, and K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by non-invasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
  53. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  54. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38, 448–457 (1948).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited