OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 17 — Jun. 10, 2003
  • pp: 3379–3389

Feature-specific imaging

Mark A. Neifeld and Premchandra Shankar  »View Author Affiliations


Applied Optics, Vol. 42, Issue 17, pp. 3379-3389 (2003)
http://dx.doi.org/10.1364/AO.42.003379


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the performance of feature-specific imaging systems. We study incoherent optical systems that directly measure linear projects of the optical irradiance distribution. Direct feature measurement exploits the multiplex advantage, and for small numbers of projections can provide higher feature-fidelity than those systems that postprocess a conventional image. We examine feature-specific imaging using Wavelet, Karhunen-Loeve (KL), Hadamard, and independent-component features, quantifying feature fidelity in Gaussian-, shot-, and quantization-noise environments. An example of feature-specific imaging based on KL projections is analyzed and demonstrates that within a high-noise environment it is possible to improve image fidelity via direct feature measurement. A candidate optical system is presented and a preliminary implementational study is undertaken.

© 2003 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.5010) Image processing : Pattern recognition
(110.0110) Imaging systems : Imaging systems
(110.6980) Imaging systems : Transforms
(200.4740) Optics in computing : Optical processing

History
Original Manuscript: October 30, 2002
Revised Manuscript: February 21, 2003
Published: June 10, 2003

Citation
Mark A. Neifeld and Premchandra Shankar, "Feature-specific imaging," Appl. Opt. 42, 3379-3389 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-17-3379


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Christensen, G. W. Euliss, M. J. McFadden, K. M. Coyle, P. Milojkovic, M. W. Haney, J. van der Gracht, R. A. Athale, “Active-eyes: an adaptive pixel-by-pixel image-segmentation sensor architecture for high-dynamic-range hyperspectral imaging,” Appl. Opt. 41, 6093–6103 (2002). [CrossRef]
  2. E. Clarkson, H. H. Barrett, “Approximations to ideal-observer performance on signal-detection tasks,” Appl. Opt. 39, 1783–1793 (2000). [CrossRef]
  3. W. C. Chou, M. A. Neifeld, R. Xuan, “Information-based optical design for binary-valued imagery,” Appl. Opt. 39, 1731–1742 (2000). [CrossRef]
  4. S. Prasad, “Information capacity of a seeing-limited imaging system,” Opt. Commun. 177, 119–134 (2000). [CrossRef]
  5. S. Tucker, W. T. Cathey, E. Dowski, “Extended depth of field and aberration control for inexpensive digital microscope systems,” Optics Express 4, 467–474 (1999). [CrossRef] [PubMed]
  6. D. L. Marks, R. Stack, A. J. Johnson, D. J. Brady, D. C. Munson, “Cone-beam tomography with a digital camera,” Appl. Opt. 40, 1795–1805 (2001). [CrossRef]
  7. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002). [CrossRef]
  8. P. Potuluri, M. Fetterman, D. Brady, “High depth of field microscopic imaging using an interferometric camera,” Opt. Express 8, 624–630 (2001). [CrossRef] [PubMed]
  9. M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Process. 1, 205–220 (1992). [CrossRef] [PubMed]
  10. M. Harwit, N. J. A. Sloane, Hadamard Transform Optics, (Academic, New York, 1979), pp. 62–70.
  11. K. I. Diamantaras, S. Y. Kung, Principal Components Neural Networks: Theory and Applications, (Wiley, New York, 1996), pp. 44–73.
  12. R. Stephen, E. Richard, Independent Component Analysis: Principles and Practice, R. Stephen, E. Richard, eds. (Cambridge University, Cambridge, UK, 2001), Chap. 1, 1–70.
  13. C. J. Oliver, “Optical image processing by multiplex coding,” Appl. Opt. 15, 93–106 (1976). [CrossRef] [PubMed]
  14. R. D. Swift, R. B. Wattson, J. A. Decker, R. Paganetti, M. Harwit, “Hadamard transform imager and imaging spectrometer,” Appl. Opt. 15, 1595–1609 (1976). [CrossRef] [PubMed]
  15. P. B. Fellgett, E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London 247, 269–407 (1955). [CrossRef]
  16. T. J. Vickers, C. K. Mann, J. Zhu, “Hadamard Multiplex Multichannel Spectroscopy to Achieve a Spectroscopic Power Distribution Advantage,” Appl. Spectrosc. 45, 42–49 (1991). [CrossRef]
  17. A. G. Marshall, M. B. Comisarow, “Fourier and Hadamard transform methods in spectroscopy,” Anal. Chem. 47, 491–504 (1975).
  18. H. J. Landau, D. Slepian, “Some computer experiments in picture processing for bandwidth reduction,” Bell Syst. Tech. J. 50, 1525–1540 (1971). [CrossRef]
  19. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990). [CrossRef]
  20. H. Feng, M. Effros, “On the rate-distortion performance and computational efficiency of the Karhunen-Loeve transform for lossy data compression,” IEEE Trans. Image Process. 11, 113–122 (2002). [CrossRef]
  21. S. J. Lee, S. B. Jung, J. W. Kwon, S. H. Hong, “Face detection and recognition using PCA,” TENCON 99 Proc. IEEE Region 10 Conference 1, 84–87 (1999).
  22. A. Aysin, L. F. Chaparro, I. Grave, V. Shusterman, “Denoising of Non-Stationary Signals Using Optimized Karhunen-Loeve Expansion,” Proc. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 621–624 (1998).
  23. A. Hyvarinen, “Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces,” Neural Comput. 12, 1705–1720 (2000). [CrossRef] [PubMed]
  24. H. Saruwatari, T. Kawamura, K. Shikano, “Fast-convergence algorithm for ICA-based blind source separation using array signal processing,” Proc. IEEE 11th Signal Processing Workshop on Statistical Signal Processing, 464–467 (2001).
  25. A. Hyvarinen, “Fast ICA by a fixed-point algorithm that maximizes non-Gaussianity,” Independent Component Analysis: Principles and Practice, R. Stephen, E. Richard, eds. (Cambridge University, Cambridge, UK, 2001), Chap. 2, pp. 71–94.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited