OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 18 — Jun. 20, 2003
  • pp: 3595–3609

Spaceborne Estimate of Atmospheric CO2 Column by Use of the Differential Absorption Method: Error Analysis

Emmanuel Dufour and François-Marie Bréon  »View Author Affiliations


Applied Optics, Vol. 42, Issue 18, pp. 3595-3609 (2003)
http://dx.doi.org/10.1364/AO.42.003595


View Full Text Article

Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For better knowledge of the carbon cycle, there is a need for spaceborne measurements of atmospheric CO2 concentration. Because the gradients are relatively small, the accuracy requirements are better than 1%. We analyze the feasibility of a CO2-weighted-column estimate, using the differential absorption technique, from high-resolution spectroscopic measurements in the 1.6- and 2-μm CO2 absorption bands. Several sources of uncertainty that can be neglected for other gases with less stringent accuracy requirements need to be assessed. We attempt a quantification of errors due to the radiometric noise, uncertainties in the temperature, humidity and surface pressure uncertainty, spectroscopic coefficients, and atmospheric scattering. Atmospheric scattering is the major source of error [5 parts per 106 (ppm) for a subvisual cirrus cloud with an assumed optical thickness of 0.03], and additional research is needed to properly assess the accuracy of correction methods. Spectroscopic data are currently a major source of uncertainty but can be improved with specific ground-based sunphotometry measurements. The other sources of error amount to several ppm, which is less than, but close to, the accuracy requirements. Fortunately, these errors are mostly random and will therefore be reduced by proper averaging.

© 2003 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

Citation
Emmanuel Dufour and François-Marie Bréon, "Spaceborne Estimate of Atmospheric CO2 Column by Use of the Differential Absorption Method: Error Analysis," Appl. Opt. 42, 3595-3609 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-18-3595


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. T. J. Conway, P. P. Tans, L. S. Waterman, and K. W. Thoning, “Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory global air-sampling network,” J. Geophys. Res. 99, 2283122855 (1994).
  2. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, eds., Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Cambridge U. Press, New York, 2001).
  3. I. G. Enting, C. M. Trudinger, and R. J. Francey, “A synthesis inversion of the concentration and δ13C of atmospheric CO2,” Tellus Ser. B 47, 3552 (1995).
  4. P. Ciais, P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey, “A large northern-hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2,” Science 269, 10981102 (1995).
  5. P. J. Rayner, I. G. Enting, R. J. Francey, and R. Langenfelds, “Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations,” Tellus Ser. B 51, 213232 (1999).
  6. P. Bousquet, P. Ciais, P. Peylin, M. Ramonet, and P. Monfray, “Inverse modeling of annual atmospheric CO2 sources and sinks 1. Method and control inversion,” J. Geophys. Res. 104, 2616126178 (1999).
  7. P. Bousquet, P. Peylin, P. Ciais, M. Ramonet, and P. Monfray, “Inverse modeling of annual atmospheric CO2 sources and sinks 2. Sensitivity study,” J. Geophys. Res. 104, 2617926193 (1999).
  8. P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175178 (2001).
  9. A. Chedin, S. Serrar, R. Armante, N. A. Scott, and A. Hollingsworth, “Signatures of annual and seasonal variations of CO2 and other greenhouse gases from comparisons between NOAA TOVS observations and radiation model simulations,” J. Clim. 15, 95116 (2002).
  10. R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 2005520068 (2001).
  11. A. Chedin, A. Hollingsworth, N. A. Scott, R. Saunders, M. Matricardi, C. Clerbaux, J. Etcheto, and R. Armante, “The feasibility of monitoring CO2 from high-resolution infrared sounders,” J. Geophys. Res. D 108, 10.1029/2001JD001443 (2003).
  12. B. Moore, “The Carbon Explorer Laser Satellite for improved understanding of sources and sinks (CELSIUS),” proposed to the NASA Earth System Science Pathfinder-3 (ESSP-3) (2001), personal communication.
  13. Z. Yang, G. C. Toon, J. S. Margolis, and P. O. Wennberg, “Atmospheric CO2 retrieved from ground-based near IR solar spectra,” Geophys. Res. Lett. 29, 10.1029/2001GL014537 (2002).
  14. B. T. Tolton and D. Plouffe, “Sensitivity of radiometric measurements of the atmospheric CO2 column from space,” Appl. Opt. 40, 13051313 (2001).
  15. M. Buchwitz, V. V. Rozanov, and J. P. Burrows, “A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances,” J. Geophys. Res. 105, 1523115245 (2000).
  16. D. M. O’Brien and P. J. Rayner, “Global observations of the carbon budget: II. CO2 column from differential absorption of relected sunlight in the 1.61-μm band of CO2,” J. Geophys. Res. 107, 10.1029/2001JD000617 (2002).
  17. Z. Kuang, J. S. Margolis, G. C. Toon, D. Crisp, and Y. Yung, “Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study,” Geophys. Res. Lett. 29, 10.1029/2001GL014298. (2002).
  18. A. Rosak, Centre National des Etudes Spatiales, Paris, France (personal communication, 2002).
  19. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44, 838850 (1954).
  20. P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, “The Polder mission—instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598615 (1994).
  21. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Ref. Publ. 1139 (NASA, Washington, D.C., 1985).
  22. R. Beer, Remote Sensing by Fourier Transform Spectrometry, (Wiley-Interscience, New York, 1992).
  23. T. von Clarmann and G. Echle, “Selection of optimized microwindows for atmospheric spectroscopy,” Appl. Opt. 37, 76617669 (1998).
  24. W. Livingston and L. Wallace, “An atlas of the solar spectrum in the infrared from 1850 to 9000 cm−1,” National Solar Observatory Technical Report 91001 (National Optical Astronomy Observatories, Tucson, Ariz., 1991).
  25. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665710 (1998).
  26. J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives,” J. Quant. Spectosc. Radiat. Transfer 21, 309313 (1978).
  27. V. V. Sobolev, Light Scattering in Planetary Atmospheres (Pergamon, New York, 1975).
  28. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 3002400-K temperature range,” Appl. Opt. 27, 39023907 (1988).
  29. A. W. Brewer, C. T. Mc Elroy, and J. B. Kerr “Nitrogen dioxide concentrations in the atmosphere,” Nature 246, 129133 (1973).
  30. U. Platt and D. Perner, “Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,” J. Geophys. Res. 85, 74537458 (1980).
  31. S. Solomon, A. L. Schmeltenkopf, and W. R. Sanders, “On the interpretation of zenith sky absorption measurements,” J. Geophys. Res. 92, 83118319 (1987).
  32. A. Richter, M. Eisinger, A. Ladstatter-Weissenmayer, and J. P. Burrows, “DOAS zenith sky observations: 2. Seasonal variation of BrO over Bremen (53 degrees N) 19941995,” J. Atmos. Chem. 32, 8399 (1999).
  33. J. P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstatter-Weissenmayer, A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K. U. Eichmann, and M. Eisinger, “The global ozone monitoring experiment (GOME): mission concept and first scientific results,” J. Atmos. Sci. 56, 151175 (1999).
  34. H. Bovensmann, J. P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V. V. Rozanov, K. V. Chance, and A. P. H. Goede, “SCIAMACHY: mission objectives and measurement modes,” J. Atmos. Sci. 56, 127150 (1999).
  35. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000), Vol. 2.
  36. GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project—carbon dioxide, CD-ROM (National Oceanic and Atmosphere Administration, Climate Monitoring and Diagnostics Laboratory, Boulder, Colo., 2001). Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW.
  37. J. H. Park, “Atmospheric CO2 monitoring from space,” Appl. Opt. 36, 27012712 (1997).
  38. L. G. Henyey and J. L. Greenstein, “Diffusive radiation in the galaxy,” Astrophys. J. 93, 7083 (1941).
  39. F. M. Breon and S. Bouffies, “Land surface pressure estimate from measurements in the oxygen A absorption band,” J. Appl. Meteorol. 35, 6977 (1996).
  40. T. Aoki, T. Aoki, and M. Fukabori, “Path-radiance correction by polarization observation of Sun glint glitter for remote measurements of tropospheric greenhouse gases,” Appl. Opt. 41, 49454957 (2002).
  41. N. Jacquinet-Husson, E. Arie, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L. R. Brown, C. Camy-Peyret, J. P. Champion, A. Chedin, A. Chursin, C. Clerbaux, G. Duxbury, J. M. Flaud, N. Fourrie, A. Fayt, G. Graner, R. Gamache, A. Goldman, V. Golovko, G. Guelachvili, J. M. Hartmann, J. C. Hilico, J. Hillman, G. Lefevre, E. Lellouch, S. N. Mikhailenko, O. V. Naumenko, V. Nemtchinov, D. A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D. C. Reuter, C. P. Rinsland, L. Rosenmann, L. S. Rothman, N. A. Scott, J. Selby, L. N. Sinitsa, J. M. Sirota, A. M. Smith, K. M. Smith, V. G. Tyuterev, R. H. Tipping, S. Urban, P. Varanasi, and M. Weber, “The 1997 spectroscopic GEISA databank,” J. Quant. Spectrosc. Radiat. Transfer 62, 205254 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited