OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3780–3784

Axial resolution limit of a fiber-optic fluorescence probe

J. Balaji, Kanchan Garai, Subhasis Chakrabarti, and Sudipta Maiti  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 3780-3784 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (87 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the limit of spatial resolution achievable when a single optical fiber is used for excitation and collection of fluorescence from a bulk specimen. We calculate the probability of detecting a fluorescent particle as a function of its position relative to the fiber face, using excitation wavelength λ, radius a, numerical aperture N.A., and the particle’s fluorescence and absorbance spectra. Treating Rhodamine B as a model fluorescent analyte and using appropriate fiber parameters, we show that the maximum axial resolution (defined as the axial distance in a homogenous solution within which 50% of the detected signal originates) achievable is ∼10 μm. We experimentally measured the axial resolution for a 500-μM aqueous solution of Rhodamine B with λ = 543 nm, a = 1.31 μm, and a N.A. of 0.16 and found good qualitative agreement with the calculation.

© 2003 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

Original Manuscript: November 22, 2002
Revised Manuscript: April 14, 2003
Published: July 1, 2003

J. Balaji, Kanchan Garai, Subhasis Chakrabarti, and Sudipta Maiti, "Axial resolution limit of a fiber-optic fluorescence probe," Appl. Opt. 42, 3780-3784 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 72, 81R–89R (2000). [CrossRef]
  2. M. D. Marazuela, M. Cruz-Bondi, “Fiber-optic biosensors—an overview,” Anal. Bioanal. Chem. 372, 664–682 (2002). [CrossRef]
  3. A. T. Linda, K. D. King, G. P. Anderson, F. S. Ligler, “Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber optic biosensor,” Anal. Biochem. 233, 50–57 (1996). [CrossRef]
  4. C. Ziegler, “Cell-based biosensors,” J. Anal. Chem. 366, 552–559 (2000). [CrossRef]
  5. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001). [CrossRef]
  6. C. Liang, K. B. Sung, R. R. Richards-Kortum, M. R. Descour, “Fiber confocal reflectance microscope,” Opt. Express 9, 821–830 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  7. C. Liang, K. B. Sung, R. R. Richards-Kortum, M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41, 4603–4610 (2002). [CrossRef] [PubMed]
  8. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, F. J. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef] [PubMed]
  9. C. Akcay, P. Parrein, J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002). [CrossRef] [PubMed]
  10. D. Magde, E. Elson, W. W. Webb, “Thermodynamic fluctuation in a reaction system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972). [CrossRef]
  11. S. Maiti, U. Haupts, W. W. Webb, “Fluorescence correlation spectroscopy: diagnostics for sparse molecules,” Proc. Natl. Acad. Sci. USA 94, 11,753–11,757 (1997). [CrossRef]
  12. U. Haupts, S. Maiti, P. Schwille, W. W. Webb, “Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. USA 95, 13,573–13,578 (1998). [CrossRef]
  13. P. Sengupta, J. Balaji, S. Maiti, “Measuring diffusion in cell membranes by fluorescence correlation spectroscopy,” Methods 27, 374–387 (2002). [CrossRef] [PubMed]
  14. B. Eric, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992). [CrossRef]
  15. S. Maiti, J. K. Ranka, A. L. Gaeta, W. W. Webb, “Multiphoton fluorescence spectroscopy through optical fibers,” Biophys. J. 72, A-217 (1997).
  16. D. M. Dinkel, F. E. Lytle, “Remote two-photon excited fluorescence sensing in a simulated fermentation broth,” Anal. Chim. Acta 263, 131–136 (1992). [CrossRef]
  17. G. P. Agarwal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  18. D. Marcuse, “Gaussian approximation of the fundamental modes of graded index fibers,” J. Opt. Soc. Am. 68, 103–109 (1978). [CrossRef]
  19. H. M. Antia, Numerical Methods for Scientists and Engineers, 2nd ed. (Hindustan Book Agency, New Delhi, 2002).
  20. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited