OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 19 — Jul. 1, 2003
  • pp: 3896–3902

Interferometer for optical coherence tomography

Christoph Hauger, Marco Wörz, and Thomas Hellmuth  »View Author Affiliations

Applied Optics, Vol. 42, Issue 19, pp. 3896-3902 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new interferometer setup for optical coherence tomography (OCT). The interferometer is based on a fiber arrangement similar to Young’s two-pinhole interference experiment with spatial coherent and temporal incoherent light. Depth gating is achieved detection of the interference signal on a linear CCD array. Therefore no reference optical delay scanning is needed. The interference signal, the modulation of the signal, the axial resolution, and the depth range are derived theoretically and compared with experiments. The dynamic range of the setup is compared with OCT sensors in the time domain. To our knowledge, the first images of porcine brain and heart tissue and human skin are presented.

© 2003 Optical Society of America

OCIS Codes
(040.1520) Detectors : CCD, charge-coupled device
(060.2310) Fiber optics and optical communications : Fiber optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.1650) Medical optics and biotechnology : Coherence imaging
(260.3160) Physical optics : Interference
(290.4210) Scattering : Multiple scattering

Original Manuscript: July 17, 2002
Revised Manuscript: November 20, 2002
Published: July 1, 2003

Christoph Hauger, Marco Wörz, and Thomas Hellmuth, "Interferometer for optical coherence tomography," Appl. Opt. 42, 3896-3902 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol. 116, 113–114 (1993). [PubMed]
  4. M. E. Brezinski, G. J. Tearney, S. A. Boppart, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical biopsy with optical coherence tomography, feasibility for surgical diagnostics,” J. Surg. Res. 71, 32–40 (1997). [CrossRef] [PubMed]
  5. F. I. Feldchtein, G. V. Gelikonov, V. M. Gelikonov, R. R. Iksanov, R. V. Kuranov, A. M. Sergeev, N. D. Gladkova, M. N. Ourutina, J. A. Warren, D. H. Reitze, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  6. J. A. Izatt, M. D. Kulkarni, H-W. Wang, K. Kobayashi, M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996). [CrossRef]
  7. M. D. Kulkarni, T. G. v. Leeuwen, S. Yazdanfar, J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998). [CrossRef]
  8. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992). [CrossRef] [PubMed]
  9. G. Häusler, M. W. Lindner, “Coherent radar and spectral radar: new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  10. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997). [CrossRef] [PubMed]
  11. U. Haberland, P. Jansen, V. Blazek, H. J. Schmitt, “Optical coherence tomography of scattering media using frequency-modulated continuous-wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997). [CrossRef]
  12. B. E. A. Saleh, M. C. Teich, Photonics (Wiley, New York, 1991).
  13. P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schutz, M. Konzog, F. Kiesewetter, G. Häusler, “Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin,” in Optical and Imaging Techniques for Biomonitoring IV, M. D. Fante, H. J. Foth, N. Marchesini, H. Podbielska, eds., Proc. SPIE3567, 78–87 (1999).
  14. S. A. Boppart, M. E. Brezinski, C. Pitris, J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834–841 (1998). [CrossRef] [PubMed]
  15. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, “Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography,” Radiology 208, 81–86 (1998). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited