OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 21 — Jul. 20, 2003
  • pp: 4381–4388

Method for Integrating the Absorption Cross Sections of Spheres over Wavelength or Diameter

Steven C. Hill  »View Author Affiliations

Applied Optics, Vol. 42, Issue 21, pp. 4381-4388 (2003)

View Full Text Article

Acrobat PDF (131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absorption cross sections of spherical particles and droplets must be integrated over frequency or droplet size or both for various applications. Morphology-dependent resonances (MDRs) of the spheres can make evaluation of such integrals difficult because the MDRs can contribute significantly to the integrals even when their linewidths are extremely narrow, especially when the absorption is weak. A method of evaluating these integrals by use of Lorentzian approximations near MDRs is described. Calculated frequency-integrated absorption cross sections illustrate how the method obtains accurate cross sections with far fewer integration points than a method that uses equally spaced points. The method reported here suggests a way to integrate over frequency in more-complicated scattering and emission problems and should also be useful for integrating scattering and absorption by other shapes, e.g., spheroids and cylinders, for which the MDR positions and linewidths can be calculated.

© 2003 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(290.1310) Scattering : Atmospheric scattering
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

Steven C. Hill, "Method for Integrating the Absorption Cross Sections of Spheres over Wavelength or Diameter," Appl. Opt. 42, 4381-4388 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. L. Mitchell, “Parameterization of the Mie extinction and absorption coefficients for water clouds,” J. Atmos. Sci. 57, 1311–1326 (2000).
  2. B. Cairns, A. A. Lacis, and B. E. Carlson, “Absorption within inhomogeneous clouds and its parameterization in general circulation models,” J. Atmos. Sci. 57, 700–714 (2000).
  3. O. Boucher, S. E. Schwartz, T. P. Ackerman, T. L. Anderson, B. Bergstrom, B. Bonnel, P. Chylek, A. Dahlback, Y. Fouquart, Q. Fu, R. N. Halthore, J. M. Haywood, T. Iversen, S. Kato, S. Kinne, A. Kirkevag, K. R. Knapp, A. Lacis, I. Laszlo, M. I. Mishchenko, S. Nemesure, V. Ramaswamy, D. L. Roberts, P. Russell, M. E. Schlesinger, G. L. Stephens, R. Wagener, M. Wang, J. Wong, and F. Yang, “Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols,” J. Geophys. Res. 103, 16,979–16,998 (1998).
  4. D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31,411–31,419 (1999).
  5. D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, E. W. Eloranta, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, and F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001).
  6. E. J. Davis and G. Schweiger, The Airborne Microparticle (Springer-Verlag, Berlin, 2002).
  7. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, 2002).
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 82–101.
  9. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  10. J. Mevel, “Étude de la structure détaillée des courbes de diffusion des ondes electromagnetiques par les sphères diélectriques,” J. Phys. Radium 19, 630–636 (1958).
  11. P. Chylek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
  12. S. C. Hill and R. E. Benner, “Morphology dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  13. S. D. Druger, S. Arnold, and L. M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649–2659 (1987).
  14. S. C. Hill, D. H. Leach, and R. K. Chang, “Third-order sum-frequency generation in droplets: model with numerical results for third-harmonic generation,” J. Opt. Soc. Am. B 10, 34–45 (1993).
  15. S. Arnold, “Cavity-enhanced fluorescence decay rates from microdroplets,” J. Chem. Phys. 106, 8280–8282 (1997).
  16. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, and J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996).
  17. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, and R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
  18. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” Phys. Rev. Lett. 89, 035002 (2002).
  19. T. Kaiser, S. Lange, and G. Schweiger, “Structural resonances in a coated sphere: investigation of the volume-averaged source function and resonance positions,” Appl. Opt. 33, 7789–7797 (1994).
  20. V. Markel, “The effects of averaging on the enhancement factor for absorption of light by carbon particles in microdroplets of water,” J. Quant. Spectrosc. Radiat. Transfer 72, 765–774 (2002).
  21. V. Markel and V. M. Shalaev, “Absorption of light by soot particles in micro-droplets of water,” J. Quant. Spectrosc. Radiat. Transfer 63, 321–339 (1999).
  22. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
  23. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
  24. E. S. Fry, “Reply to criticisms of the Pope and Fry paper on pure water absorption made in a comment by Quickenden et al.,” Appl. Opt. 39, 5843–5846 (2000).
  25. The imaginary part of the refractive index is obtained from the data in Refs. 22–24 as mi = αλ/4π, where α is the absorption coefficient. After making the calculations and figures I realized that the value of mi used here was lower than that of water at 800 nm. I did not recalculate the figures because the calculation that use equally spaced points of the integrals shown in subsequent figures are time consuming and tedious and because the point of the paper is the method and concepts, not some particular case. Although the results scale with ratio of size to wavelength if m is constant, the value of mr used is a little different from that of water at 600 nm.
  26. R. Fuchs and K. L. Kliewar, “Optical modes of vibration in an ionic crystal sphere,” J. Opt. Soc. Am. 58, 319–330 (1968).
  27. For example, gn could be the an or bn coefficient of Ref. 8. A second index, i, is convenient, beyond the n already defined, because one mode n may have multiple MDRs. Also, for calculations, the i index is over all MDRs that have sufficiently high Q in the wavelength or radius interval of the integral.
  28. J. M. Blatt and V. Weisskopf, Theoretical Nuclear Physics (Wiley, New York, 1952; reprinted by Springer-Verlag, New York, 1979), Chap. VIII, Sec. 8, esp. pp. 400 and 401.
  29. P. R. Conwell, C. K. Rushforth, R. E. Benner, and S. C. Hill, “Efficient automated algorithm for the sizing of dielectric microspheres using the resonance spectrum,” J. Opt. Soc. Am. A 1, 1181–1187 (1984).
  30. J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968 (1993).
  31. S. C. Hill, C. K. Rushforth, R. E. Benner, and P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning structural resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
  32. G. Videen and P. Chylek, “Resonances and poles of weakly absorbing spheres,” J. Opt. Soc. Am. A 12, 916–921 (1995).
  33. L. G. Guimaraes and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41, 625–647 (1994).
  34. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992).
  35. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 138–1140 (1991).
  36. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), Chap. 7. The reciprocals of the Q sum because they are proportional to the rate of energy loss (by loss to the external world or by absorption in the cavity).
  37. P. Chylek, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
  38. J. R. Probert-Jones, “Resonance component of backscattering by large dielectric spheres,” J. Opt. Soc. Am. A 1, 822–830 (1984).
  39. W. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
  40. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time-independent pertubation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990).
  41. H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991).
  42. S. C. Hill and R. E. Benner, “Morphology-dependent resonances associated with stimulated processes in microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
  43. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
  44. A. Serpenguzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14, 790–795 (1997).
  45. E. E. M. Khaled, D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Internal and scattered time-dependent intensity of a dielectric sphere illuminated with a Gaussian or a plane wave pulse,” J. Opt. Soc. Am. A 11, 2065–2071 (1994).
  46. L. Mees, G. Gouesbet, and G. Grehan, “Interaction between femtosecond pulses and a spherical microcavity,” Opt. Commun. 199, 33–38 (2001).
  47. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976).
  48. I. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres,” Appl. Opt. 41, 5783–5791 (2002).
  49. J. Kasparian, B. Kramer, J. P. Dewitz, S. Vajda, P. Rairoux, B. Vezin, V. Boutou, T. Leisner, W. Hubner, J. P. Wolf, L. Woste, and K. H. Bennemann, “Angular dependences of third harmonic generation from microdroplets,” Phys. Rev. Lett. 78, 2952–2955 (1997).
  50. H. M. Nussenzveig, “Light tunneling in clouds,” Appl. Opt. 42, 1588–1593 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited