OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 27 — Sep. 20, 2003
  • pp: 5418–5426

Information Theoretical Optimization for Optical Range Sensors

Christoph Wagner and Gerd Häusler  »View Author Affiliations


Applied Optics, Vol. 42, Issue 27, pp. 5418-5426 (2003)
http://dx.doi.org/10.1364/AO.42.005418


View Full Text Article

Acrobat PDF (596 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most of the known optical range sensors require a large amount of two-dimensional raw data from which the three-dimensional (3D) data are decoded and so are associated with considerable cost. The cost arises from expensive hardware as well as from the time necessary to acquire the images. We will address the question of how one can acquire maximum shape information with a minimum amount of image raw data, in terms of information theory. It is shown that one can greatly reduce the amount of raw data needed by proper optical redundancy reduction. Through these considerations, a 3D sensor is introduced, which needs only a single color (red-green-blue) raw image and still delivers data with only approximately 2-μm longitudinal measurement uncertainty.

© 2003 Optical Society of America

OCIS Codes
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(150.6910) Machine vision : Three-dimensional sensing

Citation
Christoph Wagner and Gerd Häusler, "Information Theoretical Optimization for Optical Range Sensors," Appl. Opt. 42, 5418-5426 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-27-5418


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. Ingelstam, “An optical uncertainty principle and its application to the amount of information obtainable from multiple-beam interference,” Ark. Fys. 7, 309–322 (1953).
  2. R. Dorsch, G. Häusler, and J. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306–1314 (1994).
  3. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
  4. G. Häusler and G. Leuchs, “Physikalische Grenzen der optischen Formerfassung mit Licht,” Phys. Bl. 53, 417–421 (1997).
  5. G. Häusler, P. Ettl, M. Schenk, G. Bohn, and I. Laszlo, “Limits of optical range sensors and how to exploit them,” in Trends in Optics and Phototonics, Ico IV, T. Asakura, ed., Vol. 74 of Springer Series in Optical Sciences(Springer-Verlag, Berlin, 1999), pp. 328–342.
  6. X. Laboureux and G. Häusler, “Localization and registration of three-dimensional objects in space—where are the limits?” Appl. Opt. 28, 5206–5216 (2001).
  7. L. Yaroslavsky, “The theory of optimal methods for localization of objects in pictures,” in Progress in Optics XXXII, E. Wolf, ed. (Elsevier Science, Amsterdam, 1993), 145–201.
  8. V. Srinivasan, H. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
  9. B. L. Ulich, “Method and apparatus for three dimensional range resolving imaging,” U.S. patent 5,249,046 (28 September 1993).
  10. C. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois, Urbana, Ill., 1949).
  11. R. Fano, Transmission of Information (MIT, Cambridge, Mass., 1961).
  12. J. Wozencraft and I. Jacobs, Principles of Communication Engineering (Wiley, New York, 1965).
  13. R. Gallager, Information Theory and Reliable Communications (Wiley, New York, 1968).
  14. A. Viterbi and J. Omura, Principles of Digital Communication and Coding (McGraw Hill, New York, 1979).
  15. R. Blahut, Principles and Practice of Information Theory (Addison-Wesley, Reading, Mass., 1987).
  16. T. Cover and J. Thomas, Elements of Information Theory (Wiley, New York, 1991).
  17. R. Johannesson, Informationstheorie—Grundlagen der (Tele-)Kommunikation (Addison-Wesley Studentlitteratur, Lund, Sweden, 1992).
  18. M. Neifeld, “Information, resolution, and space-bandwidth product,” Opt. Lett. 23, 1477–1479 (1998).
  19. R. Röhler, Informationstheorie in der Optik (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1967).
  20. B. Frieden, Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, 2001).
  21. R. Johannesson, Informationstheorie—Grundlagen der (Tele-)Kommunikation (Addison-Wesley Studentlitteratur, Lund, Sweden, 1992), p. 11.
  22. R. Johannesson, Informationstheorie—Grundlagen der (Tele-)Kommunikation (Addison-Wesley Studentlitteratur, Lund, Sweden, 1992), pp. 235–238.
  23. G. Häusler and J. Hermann, “Physical limits of 3D sensing,” in Optics, Illumination, and Image Sensing for Machine Vision VII, D. Svetkoff, ed., Proc. SPIE 1822, 150–158 (1992).
  24. B. Frieden, Probability, Statistical Optics, and Data Testing (Springer-Verlag, Berlin, 2001), Chap. 8.
  25. R. Röhler, Informationstheorie in der Optik (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1967), pp. 160–161.
  26. R. Röhler, Informationstheorie in der Optik (Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1967), pp. 166–167.
  27. B. Horn and M. Brooks, eds., Shape from Shading (MIT, Cambridge, Mass., 1989).
  28. R. Woodham, “Photometric method for determining surface orientation from multiple images,” in Shape from Shading, B. Horn and M. Brooks, eds. (MIT, Cambridge, Mass., 1989), pp. 513–532.
  29. G. Häusler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164–7169 (1993).
  30. B. L. Ulich, P. Lacovara, S. E. Moran, and M. J. DeWeert, “Recent results in imaging lidar,” in Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications, R. M. Narayanan and J. E. Kalshoven, eds., Proc. SPIE 3059, 95–108 (1997).
  31. A. Blake, A. Zisserman, and G. Knowles, “Surface description from stereo and shading,” in Shape from Shading, B. Horn and M. Brooks, eds. (MIT, Cambridge, Mass., 1989), pp. 29–52.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited