OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 3 — Jan. 20, 2003
  • pp: 585–591

Stable Near-End Solution of the Lidar Equation for Clear Atmospheres

Vladimir A. Kovalev  »View Author Affiliations


Applied Optics, Vol. 42, Issue 3, pp. 585-591 (2003)
http://dx.doi.org/10.1364/AO.42.000585


View Full Text Article

Acrobat PDF (129 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A stable variant of the near-end solution has been developed for inversion of lidar signals measured in clear atmospheres. The inversion is based on the use of reference values of the extinction coefficient obtained with a nephelometer at the lidar measurement site. The inversion method, based on a combination of the optical depth and boundary point solutions, is illustrated by simulated and experimental data.

© 2003 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1120) Remote sensing and sensors : Air pollution monitoring
(290.1310) Scattering : Atmospheric scattering

Citation
Vladimir A. Kovalev, "Stable Near-End Solution of the Lidar Equation for Clear Atmospheres," Appl. Opt. 42, 585-591 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-3-585


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. M. Hoff, L. Guise-Bagley, R. M. Staebler, H. A. Wiebe, J. Brook, B. Georgi, and T. Düsterdiek, “Lidar, nephelometer, and in situ aerosol experiments in Southern Ontario,” J. Geophys. Res. 101, 19199–19209 (1996).
  2. K. J. Voss, E. J. Welton, P. K. Quinn, J. Johnson, A. M. Thompson, and H. R. Gordon, “Lidar measurements during Aerosols99,” J. Geophys. Res. 106, 20821–20831 (2001).
  3. F. Marenco, V. Santacesaria, A. F. Baus, D. Balis, A. di Sarra, A. Papayannis, and C. Zerefos, “Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (Photochemical Activity and Solar Ultraviolet Radiation campaign),” Appl. Opt. 36, 6875–6886 (1997).
  4. T. Takamura, Y. Sasano, and T. Hayasaka, “Tropospheric aerosol optical properties derived from lidar, sun photometer, and optical particle counter measurements,” Appl. Opt. 33, 7132–7140 (1994).
  5. Y. Sasano, “Tropospheric aerosol extinction coefficient properties derived from scanning lidar measurements over Tsukiba, Japan, from 1990 to 1993,” Appl. Opt. 35, 4941–4952 (1996).
  6. C. A. Brock, L. F. Radke, and P. V. Hobbs, “Sulfur in particles in Arctic hazes derived from airborne in situ and lidar measurements,” J. Geophys. Res. 95, 22369–22387 (1990).
  7. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering. I. Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998).
  8. C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. K. Quinn, R. Frouin, D. Bruneau, J. F. Leon, T. S. Bates, J. Johnson, and J. Livinston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662–677 (2000).
  9. C. M. R. Platt, “Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements,” J. Appl. Meteorol. 18, 1130–1143 (1979).
  10. J. Heintzenberg and R. J. Charlson, “Design and application of the integrating nephelometer: a review,” J. Atmos. Oceanic Technol. 13, 987–1000 (1996).
  11. T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, A. P. Waggoner, J. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, and T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Oceanic Technol. 13, 967–986 (1996).
  12. W. P. Arnott, H. Moosmüller, C. F. Rogers, T. Jin, and R. Bruch, “Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description,” Atmos. Environ. 33, 2845–2852 (1999).
  13. H. Moosmüller, W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, and D. L. Dietrich, “Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality (Colorado 1996/1997),” J. Geophys. Res. 103, 28149–28157 (1998).
  14. J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
  15. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
  16. V. A. Kovalev and H. Moosmüller, “Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere,” Appl. Opt. 33, 6499–6507 (1994).
  17. V. A. Kovalev, “Sensitivity of the lidar equation solution to errors in the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient,” Appl. Opt. 34, 3457–3462 (1995).
  18. J. D. Spinhirne, J. A. Reagan, and B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980).
  19. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), p. 328.
  20. F. F. Hall, R. E. Cupp, and S. W. Troxel, “Cirrus cloud transmittance in the infrared measured with a CO2 lidar,” Appl. Opt. 12, 2510–2516 (1988).
  21. K. Sassen and B. S. Cho, “Subvisual-thin cirrus lidar dataset for satellite verification and climatological research,” J. Appl. Meteorol. 31, 1275–1285 (1992).
  22. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited