OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 5978–5985

Computational Fluid-Dynamic Model of Laser-Induced Breakdown in Air

Ivan G. Dors and Christian G. Parigger  »View Author Affiliations


Applied Optics, Vol. 42, Issue 30, pp. 5978-5985 (2003)
http://dx.doi.org/10.1364/AO.42.005978


View Full Text Article

Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.3450) Lasers and laser optics : Laser-induced chemistry
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(280.1740) Remote sensing and sensors : Combustion diagnostics
(350.5400) Other areas of optics : Plasmas

Citation
Ivan G. Dors and Christian G. Parigger, "Computational Fluid-Dynamic Model of Laser-Induced Breakdown in Air," Appl. Opt. 42, 5978-5985 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-30-5978


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. I. G. Dors, “Laser spark ignition modeling,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 2000).
  2. Y. Chen, “Laser-induced gas breakdown and ignition,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1998).
  3. D. H. Plemmons, “Laser-spark ignition and the NH radical,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn., 1996).
  4. Y.-L. Chen, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 1999).
  5. W. Qin, University of Tennessee Space Institute, Tullahoma, Tenn. 37388 (personal communication, 2000).
  6. Y. A. Chen and J. W. L. Lewis, “Visualization of laser-induced breakdown and ignition,” Opt. Express 9, 360–372 (2001), http://www.opticsexpress.org.
  7. H. Yan, R. Adelgren, M. Boguszko, G. Elliott, and D. Knight, “Laser energy deposition in quiescent air,” presented at AIAA 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003–1051, Reno, Nev., 6–9 Jan. 2003.
  8. D. Knight, “Survey of aerodynamic flow control at high speed by energy deposition,” presented at 41st Aerospace Sciences Meeting and Exhibit, AIAA paper 2003–525, Reno, Nev., 6–9 Jan. 2003.
  9. V. Svetsov, M. Popova, V. Rybakov, V. Artemiev, and S. Medveduk, “Jet and vortex flow induced by anisotropic blast wave: experimental and computational study,” Shock Waves 7, 325–334 (1997).
  10. H. Steiner and W. Gretler, “The propagation of spherical and cylindrical shock waves in real gases,” Phys. Fluids 6, 2154–2164 (1994).
  11. H. Steiner, W. Gretler, and T. Hirschler, “Numerical solution for spherical laser-driven shock waves,” Shock Waves 8, 139–147 (1998).
  12. Z. Jiang, K. Takayama, K. P. B. Moosad, O. Onodera, M. Sun, “Numerical and experimental study of a micro-blast wave generated by pulsed-laser beam focusing,” Shock Waves 8, 337–349 (1998).
  13. G. Taylor, “The formation of a blast wave by a very intense explosion,” Proc. R. Soc. London Ser. A 201, 175–186 (1950).
  14. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 2nd ed. (Academic, New York, 1959).
  15. Computational Fluid Dynamics Research Corporation, 215 Wynn Drive, Huntville, Ala. 35805.
  16. G. V. Sklizkov, “Lasers in high-speed photography,” in Laser Handbook, F. T. Arrechi and E. O. Schulz-DuBois, eds. (North-Holland, New York, 1972), Vol. 2, Part F3, pp. 1545–1576.
  17. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer-Verlag, New York, 2001).
  18. C. G. Parigger, D. H. Plemmons, J. W. L. Lewis, G. Guan, and Y. L. Chen, “Visualization of laser-induced plasma,” http://view.utsi.edu/cparigge/shadow/airimages.html.
  19. A. Thorne, U. Litzén, and S. Johansson, Spectrophysics, Principles and Applications (Springer-Verlag, New York, 1999), Chap. 9, pp. 220–222.
  20. J. B. Simeonsson and A. W. Miziolek, “Time-resolved emission studies of ArF-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993).
  21. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, “JANAF thermochemical tables. Third edition,” J. Phys. Chem. Ref. Data 14, 1–186 (1985).
  22. C. E. Moore, Hydrogen through Vanadium, Vol. I of Atomic Energy Levels Circ. Nat. Bur. Stand. (V.S.) Circ. 467 (1949).
  23. Computational Fluid Dynamics Research Corporation, CFD-ACE Theory Manual, 5th ed. (Computational Fluid Dynamics Research Corporation, Huntsville, Ala., 1998).
  24. B. McBride and S. Gordon, “Chemical equilibrium program CEA,” NASA report RP-1311 (National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio, 1996).
  25. D. C. Smith, “Laser induced gas breakdown and plasma interaction,” presented at AIAA 38th Aerospace Sciences Meeting and Exhibit, AIAA paper 2000–716, Reno, Nev., 10–13 Jan 2000.
  26. C. Parigger, Y. Tang, D. H. Plemmons, and J. W. L. Lewis, “Spherical aberration effects in lens-axicon doublets: theoretical study” Appl. Opt. 36, 8214–8221 (1997).
  27. G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds, 1st. ed. (Marcel Dekker, New York, 1989), pp. 1–67.
  28. R. G. Root, “Modeling of post-breakdown phenomena,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and A. Cremers, eds., 1st ed. (Marcel Dekker, New York, 1989), pp. 69–103.
  29. C. Grey Morgan, “Laser-produced plasmas,” in Radiative Processes in Discharge Plasmas, J. M. Proud and L. H. Luessen, eds. Vol. 149 NATO Advanced Study Institute on Radiative Processes in Discharge Plasmas(Plenum, New York, 1985), pp. 457–507.
  30. C. Grey Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
  31. Y.-L. Chen, J. W. L. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transfer 7, 91–103 (2000).
  32. J. Stricker and J. G. Parker, “Experimental investigations of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 μ,” J. Appl. Phys. 53, 851–855 (1982).
  33. G. Baravian, J. Godart, and G. Sultan, “Multiphoton ionization of molecular nitrogen by a neodymium-glass laser,” Phys. Rev. A 25, 1483–1495 (1982).
  34. R. L. Taylor and G. Caledonia, “Experimental determination of the cross-sections for neutral bremsstrahlung,” J. Quant. Spectrosc. Radiat. Transfer 9, 681–696 (1969).
  35. I. Dors, C. Parigger, and J. W. L. Lewis, “Fluid dynamic effects following laser-induced optical breakdown,” 38th Aerospace Sciences Meeting and Exhibit, paper AIAA 2000–717, Reno, Nev., 10–13 Jan. 2000.
  36. M. I. Boulos, P. Fäuchais, and Pfender, “Thermal Plasmas: Fundamentals and Applications, 1st ed. (Plenum, New York, New York, 1994), App. pp. 385–448.
  37. C. R. Wilke, “A viscosity equation for gas mixtures.” J. Chem. Phys. 18, 517–519 (1950).
  38. E. Gutheil, G. Balakrishnan, and F. A. Williams, “Structure and extinction of hydrogen-air diffusion flames,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters and B. Rogg, eds. (Springer-Verlag, New York, 1993), pp. 177–195.
  39. P. J. VanDoormal and G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transfer 7, 147–163 (1984).
  40. C. G. Parigger and I. G. Dors, “Laser-induced breakdown: pressure and temperature dynamics,” in Laser Induced Plasma Spectrosocopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics series(Optical Society of America, Washington, D.C., 2002), pp. 78–79.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited