OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6099–6106

Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses

Jon Scaffidi, Jack Pender, William Pearman, Scott R. Goode, Bill W. Colston, Jr., J. Chance Carter, and S. Michael Angel  »View Author Affiliations


Applied Optics, Vol. 42, Issue 30, pp. 6099-6106 (2003)
http://dx.doi.org/10.1364/AO.42.006099


View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

© 2003 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown

History
Original Manuscript: February 20, 2003
Revised Manuscript: July 8, 2003
Published: October 20, 2003

Citation
Jon Scaffidi, Jack Pender, William Pearman, Scott R. Goode, Bill W. Colston, J. Chance Carter, and S. Michael Angel, "Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses," Appl. Opt. 42, 6099-6106 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-30-6099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby MASER,” Appl. Spectrosc. 16, 59 (1962).
  2. D. Anglos, S. Couris, C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025–1030 (1997). [CrossRef]
  3. D. Anglos, C. Balas, C. Fotakis, “Laser spectroscopic and optical imaging techniques in chemical and structural diagnostics of painted artwork,” Am. Lab. (Shelton, Conn.) 31, 60–62 (1999).
  4. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001). [CrossRef]
  5. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197–198, 156–163 (2002). [CrossRef]
  6. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta Part B 56, 637–649 (2001). [CrossRef]
  7. J. Gruber, J. Heitz, H. Strasser, D. Bäuerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001). [CrossRef]
  8. L. Barrette, S. Turmel, “On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection,” Spectrochim. Acta Part B 56, 715–723 (2001). [CrossRef]
  9. R. Nyga, W. Neu, “Double-pulse technique for optical-emission spectroscopy of ablation plasmas of samples in liquids,” Opt. Lett. 18, 747–749 (1993). [CrossRef] [PubMed]
  10. A. I. Whitehouse, J. Young, I. M. Botheroyd, S. Lawson, C. P. Evans, J. Wright, “Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 821–830 (2001). [CrossRef]
  11. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000). [CrossRef]
  12. G. A. Theriault, S. H. Lieberman, “Field deployment of a LIBS probe for rapid delineation of metals in soils,” in Advanced Technologies for Environmental Monitoring and Remediation, T. Vo-Dinh, ed., Proc. SPIE2835, 83–89 (1996). [CrossRef]
  13. G. A. Theriault, S. Bodensteiner, S. H. Lieberman, “A real-time fiber-optic LIBS probe for the in situ delineation of metals in soils,” Field Anal. Chem. Technol. 2, 117–125 (1998). [CrossRef]
  14. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996). [CrossRef]
  15. B. J. Marquardt, B. M. Cullum, T. J. Shaw, S. M. Angel, “Fiber optic probe for determining heavy metals in solids based on laser-induced plasmas,” in Chemical, Biochemical and Environmental Fiber Sensors IX, R. A. Lieberman, ed., Proc. SPIE3105, 203–212 (1997). [CrossRef]
  16. B. J. Marquardt, D. N. Stratis, D. A. Cremers, S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998). [CrossRef]
  17. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative-analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta Part B 50, 1059–1075 (1995). [CrossRef]
  18. C. M. Davies, H. H. Telle, A. W. Williams, “Remote in situ analytical spectroscopy and its applications in the nuclear industry,” Fresenius J. Anal. Chem. 355, 895–899 (1996).
  19. R. E. Neuhauser, U. Panne, R. Niessner, “Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols,” Anal. Chim. Acta 392, 47–54 (1999). [CrossRef]
  20. S. Palanco, J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparation and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000). [CrossRef]
  21. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000). [CrossRef]
  22. M. Tran, Q. Sun, B. Smith, J. D. Winefordner, “Direct determination of trace elements in terephthalic acid by laser induced breakdown spectroscopy,” Anal. Chim. Acta 419, 153–158 (2000). [CrossRef]
  23. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001). [CrossRef]
  24. R. Barbini, F. Colao, R. Fantoni, A. Palucci, F. Capitelli, “Application of laser-induced breakdown spectroscopy to the analysis of metals in soils,” Appl. Phys. A 69, (Suppl.) S175–S178 (1999).
  25. V. Lazic, R. Barbini, F. Colao, R. Fantoni, A. Palucci, “Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta Part B 56, 807–820 (2001). [CrossRef]
  26. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001). [CrossRef]
  27. J. O. Cáceres, J. Tornero López, H. H. Telle, A. González Ureña, “Quantitative analysis of trace metal ions in ice using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 831–838 (2001). [CrossRef]
  28. M. Tran, S. Sun, B. W. Smith, J. D. Winefordner, “Determination of C:H:O:N ratios in solid organic compounds by laser-induced plasma spectroscopy,” J. Anal. At. Spectrom. 16, 628–632 (2001). [CrossRef]
  29. Q. Sun, M. Tran, B. W. Smith, J. D. Winefordner, “Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy,” Anal. Chim. Acta 413, 187–195 (2000). [CrossRef]
  30. C. Aragón, J. A. Aguilera, F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999). [CrossRef]
  31. L. M. Cabalín, J. J. Laserna, “Surface stoichiometry of manganin coatings prepared by pulsed laser deposition as described by laser-induced breakdown spectrometry,” Anal. Chem. 73, 1120–1125 (2001). [CrossRef]
  32. P. Lucena, J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta Part B 56, 177–185 (2001). [CrossRef]
  33. J. Amador-Hernández, J. M. Fernández-Romero, M. D. Luque de Castro, “Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition,” Anal. Chim. Acta 435, 227–238 (2001). [CrossRef]
  34. A. De Giacomo, V. A. Shakhatov, O. De Pascale, “Optical emission spectroscopy and modeling of plasma produced by laser ablation of titanium oxides,” Spectrochim. Acta Part B 56, 753–776 (2001). [CrossRef]
  35. V. Detalle, R. Héon, M. Sabsabi, L. St.-Onge, “An evaluation of a commercial echelle spectrometer with intensified charge-coupled device detector for materials analysis by laser-induced plasma spectroscopy,” Spectrochim. Acta Part B 56, 1011–1025 (2001). [CrossRef]
  36. Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, “Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy,” Microchem. J. 68, 251–256 (2001). [CrossRef]
  37. L. Burgio, R. J. H. Clark, T. Stratoudaki, M. Doulgeridis, D. Anglos, “Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy,” Appl. Spectrosc. 54, 463–469 (2000). [CrossRef]
  38. M. Castillejo, M. Martin, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. J. H. Clark, “Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy,” J. Mol. Struct. 550, 191–198 (2000). [CrossRef]
  39. V. Tornari, V. Zafiropulos, A. Bonarou, N. A. Vainos, C. Fotakis, “Modern technology in artwork conservation: a laser-based approach for process control and evaluation,” Opt. Lasers Eng. 34, 309–326 (2000). [CrossRef]
  40. L. Burgio, K. Melessanaki, M. Doulgeridis, R. J. H. Clark, D. Anglos, “Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy,” Spectrochim. Acta 56, 905–913 (2001). [CrossRef]
  41. M. Bicchieri, M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, E. Tognoni, “Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy,” Spectrochim. Acta 56, 915–922 (2001). [CrossRef]
  42. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Cáceras Ureña, A. González, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta 56, 865–875 (2001). [CrossRef]
  43. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, (Suppl.) S179–S182 (1999).
  44. O. Samek, M. Liska, J. Kaiser, D. C. S. Beddows, H. H. Telle, S. V. Kukhlevesky, “Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials,” J. Clin. Laser Med. Surg. 18, 281–289 (2000).
  45. C. C. Garcia, J. M. Vadillo, S. Palanco, J. Ruiz, J. J. Laserna, “Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry,” Spectrochim. Acta Part B 56, 923–931 (2001). [CrossRef]
  46. F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, C. Becker, “Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence,” Spectrochim. Acta Part B 56, 933–945 (2001). [CrossRef]
  47. H. H. Telle, D. C. S. Beddows, G. W. Morris, O. Samek, “Sensitive and selective spectrochemical analysis of metallic samples: the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy,” Spectrochim. Acta Part B 56, 947–960 (2001). [CrossRef]
  48. L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  49. G. Colonna, A. Casavola, M. Capitelli, “Modelling of LIBS plasma expansion,” Spectrochim. Acta Part B 56, 569–586 (2001). [CrossRef]
  50. A. Ciucci, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “CF-LIPS: a new approach to LIPS spectra analysis,” Laser Part. Beams 17, 793–797 (1999). [CrossRef]
  51. A. Ciucci, M. Corsi, S. Palleschi, S. Rastelli, A. Salvetti, D. P. Singh, E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999). [CrossRef]
  52. I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000). [CrossRef]
  53. G. Galbacs, I. B. Gornushkin, B. W. Smith, J. D. Winefordner, “Semi-quantitative analysis of binary alloys using laser-induced breakdown spectroscopy and a new calibration approach based on linear correlation,” Spectrochim. Acta Part B 56, 1159–1173 (2001). [CrossRef]
  54. L. St.-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002). [CrossRef]
  55. D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000). [CrossRef]
  56. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. A. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320–327 (2001). [CrossRef] [PubMed]
  57. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001). [CrossRef]
  58. R. Sattmann, V. Sturm, R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch ND-YAG laser-pulses,” J. Phys. D 28, 2181–2187 (1995). [CrossRef]
  59. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, K. Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68, 2981–2986 (1996). [CrossRef] [PubMed]
  60. A. E. Pichahchy, D. A. Cremers, M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25–39 (1997). [CrossRef]
  61. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984). [CrossRef]
  62. L. St.-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407–415 (1998). [CrossRef]
  63. D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3534, 592–600 (1999). [CrossRef]
  64. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000). [CrossRef]
  65. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a 2nd pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991). [CrossRef]
  66. D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS: why are two lasers better than one?,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. L. Spellicy, eds., Proc. SPIE3853, 385–392 (1999). [CrossRef]
  67. D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000). [CrossRef]
  68. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001). [CrossRef]
  69. Y. I. Lee, J. Sneddon, “Spatial and temporal characteristics of an excimer laser-induced lead plasma emission,” Spectrosc. Lett. 29, 1157–1171 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited