OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 30 — Oct. 20, 2003
  • pp: 6192–6198

Measurement and Analysis of Atomic and Diatomic Carbon Spectra from Laser Ablation of Graphite

Christian G. Parigger, James O. Hornkohl, Anna M. Keszler, and László Nemes  »View Author Affiliations

Applied Optics, Vol. 42, Issue 30, pp. 6192-6198 (2003)

View Full Text Article

Acrobat PDF (393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectra from plasma produced by laser-induced breakdown of graphite were recorded and analyzed to increase our understanding of the way in which carbon nanoparticles are created during Nd:YAG laser ablation of graphite. The effects of various buffer gases were studied. Electron density and temperature were determined from spectra of the first and second ions of atomic carbon. The C<sub>2</sub> Swan spectrum was also prominent in most of the measured spectra. Temperature was inferred from each experimental Swan spectrum by determination of the temperature for which a synthetic Swan spectrum best fitted, in the least-squares sense, the measured spectrum.

© 2003 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6390) Spectroscopy : Spectroscopy, molecular
(350.5400) Other areas of optics : Plasmas

Christian G. Parigger, James O. Hornkohl, Anna M. Keszler, and László Nemes, "Measurement and Analysis of Atomic and Diatomic Carbon Spectra from Laser Ablation of Graphite," Appl. Opt. 42, 6192-6198 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Abilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in an ambient gas,” Phys. Rev. E 48, 2929–2933 (1993).
  2. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82, 2140–2146 (1997).
  3. S. Arepalli, P. Nikolaev, W. Holmes, and C. D. Scott, “Diagnostics of laser-produced plume under carbon nanotube growth conditions,” Appl. Phys. A 69, 1–9 (1999).
  4. S. Arepalli, C. D. Scott, P. Nikolaev, and R. E. Smalley, “Electronically excited C2 from laser photodissociated C60,” Chem. Phys. Lett. 320, 26–34 (2000).
  5. A. A. Puretzky, D. B. Geohegan, X. Fan, and S. J. Pennycook, “In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization,” Appl. Phys. Lett. 76, 182–184 (2000).
  6. S. S. Harilal, “Expansion dynamics of laser ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103–109 (2001).
  7. C. G. Parigger, G. Guan, and J. O. Hornkohl, “Measurement and analysis of OH emission spectra following laser-induced breakdown,” Appl. Opt. 42, 5986–5991 (2003), and references therein.
  8. J. O. Hornkohl and C. G. Parigger, “Boltzmann Equilibrium Spectrum Program (BESP),” http.//view.utsi.edu/besp.
  9. C. G. Parigger, J. O. Hornkohl, A. M. Keszler, and L. Nemes, “Laser-induced breakdown spectroscopy: molecular spectra with BESP and NEQAIR,” in Laser Induced Plasma Spectroscopy and Applications, Vol. 81 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 104–105.
  10. C. Parigger, D. H. Plemmons, J. O. Hornkohl, and J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 17, pp. 676–677.
  12. S. L. Chin, “Laser beam transport,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 2, pp. 39–62.
  13. R. N. Compton and J. C. Miller, “Multiphoton ionization photoelectron spectroscopy: MPI-PES,” in Laser Applications in Physical Chemistry, D. K. Evans, ed. (Marcel Dekker, New York, 1989), Chap. 6, pp. 221–306.
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart & Winston, New York, 1976), p. 304.
  15. G. M. Weyl, “Physics of laser-induced breakdown: an update,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, New York, 1989), Chap. 1, pp. 1–67.
  16. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964), Tables 4 and 5.
  17. J. H. Van Vleck, “The coupling of angular momentum vectors in molecules,” Rev. Mod. Phys. 23, 213–227 (1951).
  18. I. Kovacs, Rotational Structure in The Spectra of Diatomic Molecules (American Elsevier, New York, 1969), p. 14.
  19. R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for construction of RKR potentials,” J. Mol. Spectrosc. 46, 37–66 (1973).
  20. B. R. Judd, Angular Momentum Theory for Diatomic Molecules (Academic, New York, 1975), pp. 4–5.
  21. M. Mizushima, The Theory of Rotating Diatomic Molecules (Wiley, New York, 1975).
  22. J. D. Graybeal, Molecular Spectroscopy (McGraw-Hill, New York, 1988), pp. 54–61.
  23. H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando, Fla., 1986), p. 98.
  24. R. N. Zare, Angular Momentum (Wiley, New York, 1988).
  25. H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), pp. 15–17.
  26. P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research Press, Ottawa, Canada, 1998).
  27. J. G. Phillips, and S. P. Davis, The Swan System of the C2 Molecule (U. California Press, Berkeley, Calif., 1968).
  28. C. F. Chabalowski, R. J. Buenker, and S. D. Peyerimhoff, “Theoretical study of the electronic transition moments for the d 3πg ↔ a 3πu (Swan) and e 3Π ↔ a 3Πu (Fox-Herzberg) band in C2,” Chem. Phys. Lett. 83, 441–448 (1981).
  29. C. Naulin, M. Costes, and G. Dorthe, “C2 radicals in a supersonic molecular beam. Radiative lifetime of the d 3Πg state measured by laser-induced fluorescence,” Chem. Phys. Lett. 143, 496–500 (1988).
  30. J. A. Nelder, and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited