## Determination of the Optical Properties of a Two-Layer Tissue Model by Detecting Photons Migrating at Progressively Increasing Depths

Applied Optics, Vol. 42, Issue 31, pp. 6398-6411 (2003)

http://dx.doi.org/10.1364/AO.42.006398

Acrobat PDF (390 KB)

### Abstract

We have investigated a method for solving the inverse problem of determining the optical properties of a two-layer turbid model. The method is based on deducing the optical properties (OPs) of the top layer from the absolute spatially resolved reflectance that results from photon migration within only the top layer by use of a multivariate calibration model. Then the OPs of the bottom layer are deduced from relative frequency-domain (FD) reflectance measurements by use of the two-layer FD diffusion model. The method was validated with Monte Carlo FD reflectance profiles and experimental measurements of two-layer phantoms. The results showed that the method is useful for two-layer models with interface depths of >5 mm; the OPs were estimated, within a relatively short time (<1 min), with a mean error of <10% for the Monte Carlo reflectance profiles and with errors of <25% for the phantom measurements.

© 2003 Optical Society of America

**OCIS Codes**

(170.3660) Medical optics and biotechnology : Light propagation in tissues

(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

(170.5280) Medical optics and biotechnology : Photon migration

(170.7050) Medical optics and biotechnology : Turbid media

**Citation**

Yasser S. Fawzi, Abo-Bakr M. Youssef, Mohamed H. El-Batanony, and Yasser M. Kadah, "Determination of the Optical Properties of a Two-Layer Tissue Model by Detecting Photons Migrating at Progressively Increasing Depths," Appl. Opt. **42**, 6398-6411 (2003)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-31-6398

Sort: Year | Journal | Reset

### References

- R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements,” Appl. Opt. 22, 2456–2467 (1983).
- B. C. Wilson, T. J. Farrell, and M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series(SPIE, Bellingham, Wash., 1990), pp. 219–231.
- M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 1–12 (1997).
- A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
- J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. A. Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40, 1155–1164 (2001).
- B. W. Pogue and M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
- A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source,” Phys. Med. Biol. 42, 1801–1819 (1997).
- M. Gerken and G. W. Faris, “High-accuracy optical property measurements using a frequency domain technique,” in Optical Tomography and Spectroscopy of Tissues III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, 593–600 (1999).
- S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36, 1155–1161 (1989).
- S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. C. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
- T. J. Farrell, M. S. Patterson, and M. Essenpries, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
- G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7410 (1998).
- A. Kienle, L. Lilge, M. S. Patterson, B. C. Wilson, R. Hibst, and R. Steiner, “Investigation of multi-layered tissue with in-vivo reflectance measurements,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, and V. V. Tuchin, eds., Proc. SPIE 2326, 212–221 (1995).
- A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998).
- M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
- E. Okada, M. Firbank, and D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
- M. Hibroka, M. Firbank, M. Essenpries, M. Cope, S. R. Arridge, P. Zee, and D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993).
- R. J. Hunter, M. S. Patterson, T. J. Farrell, and J. E. Hayward, “Haemoglobin oxygenation of a two-layer tissue-simulating phantom for time-resolved reflectance: effect of top layer thickness,” Phys. Med. Biol. 47, 193–208 (2002).
- T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tomberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt. 39, 4733–4745 (2000).
- G. Alexandrakis, R. A. Weersink, J. T. Bruulsema, and M. S. Patterson, “Estimation of the optical properties of two-layer tissue simulating phantoms from spatially resolved frequency-domain reflectance,” in Optical Tomography and Spectroscopy of Tissues III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, 155–163 (1999).
- G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain,” Appl. Opt. 39, 2235–2244 (2000).
- G. Alexandrakis, D. R. Busch, G. W. Faris, and M. S. Patterson, “Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model,” Appl. Opt. 40, 3810–3821 (2001).
- G. H. Weiss, R. Nossal, and R. F. Bonner, “Statistics of penetration depth of photons reemitted from irradiated tissue,” J. Mod. Opt. 36, 349–359 (1989).
- M. S. Patterson, S. Anderson, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
- J. C. Schotland, J. C. Haselgrove, and J. S. Leigh, “Photon hitting density,” Appl. Opt. 32, 448–453 (1993).
- H. Martens and T. Naes, Multivariate Calibration (Wiley, New York, 1994).
- B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
- S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. Mueller and D. Sliney, eds., Vol. IS5 of SPIE Institute Series(SPIE, Bellingham, Wash., 1989), pp. 102–111.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C—The Art of Scientific Computing, 2nd ed.(Cambridge U. Press, London, 1992).
- R. C. Haskel, L. O. Svaasand, T. T. Tasy, T. C. Feng, M. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
- B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurements of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
- C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W. Parks, R. W. Schafer, and H. W. Schuessler, Computer-Based Exercises for Signal Processing Using Matlab (Prentice-Hall, Englewood Cliffs, N.J., 1994).
- J. R. Mourant, I. J. Bigio, D. A. Jack, and T. M. Johnson, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997).
- G. Kumar and J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36, 2286–2293 (1997).
- R. Bays, G. Weorgers, D. Robert, J. Theumann, A. Vitkin, J. Savary, P. Monnier, and H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997).
- S. Yeh and O. S. Khalil, “Multivariate method for the determination of tissue optical properties from diffuse reflectance profiles,” in Optical Tomography and Spectroscopy of Tissues III, B. Chance, R. R. Alfano, and B. Tromberg, eds., Proc. SPIE 3597, 456–464 (1999).
- F. Bevilacqua, D. Piguet, P. Marquet, and B. J. Tromberg, “Invivo local determination of tissue optical properties,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 262–268 (1997).
- F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.