OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 32 — Nov. 10, 2003
  • pp: 6439–6444

Reconfigurable Electro-Optical Waveguide for Optical Processing

D. Dragoman and M. Dragoman  »View Author Affiliations


Applied Optics, Vol. 42, Issue 32, pp. 6439-6444 (2003)
http://dx.doi.org/10.1364/AO.42.006439


View Full Text Article

Acrobat PDF (108 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A highly versatile electro-optically induced waveguide is proposed, and some of its applications are discussed. The In<sub>1−<i>s</i></sub>Ga<sub><i>s</i></sub>As<sub><i>t</i></sub>P<sub>1−<i>t</i></sub>-based device can reconfigure an arbitrary refractive-index profile with high speed by using an array of stripe electrodes deposited along the device. This device can act as a variable fractional Fourier transformer or as a beam shaper. Some nonguiding applications based on a specific refractive-index patterning that is normal to the light-propagation direction, such as phase modulation and beam steering, can also be implemented with this device.

© 2003 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4560) Fourier optics and signal processing : Data processing by optical means
(230.0230) Optical devices : Optical devices
(230.7390) Optical devices : Waveguides, planar

Citation
D. Dragoman and M. Dragoman, "Reconfigurable Electro-Optical Waveguide for Optical Processing," Appl. Opt. 42, 6439-6444 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-32-6439


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  2. D. Dragoman and M. Dragoman, Advanced Optoelectronic Devices (Springer-Verlag, Berlin, 1999).
  3. B. Pezeshki, R. B. Apte, S. M. Lord, and J. S. Harris, Jr., “Quantum well modulators for optical beam steering applications,” IEEE Photon. Technol. Lett. 3, 790–792 (1991).
  4. S. Adachi and K. Oe, “Linear electro-optic effects in zincblende-type semiconductors: key properties of InGaAsP relevant to device design,” J. Appl. Phys. 56, 74–80 (1984).
  5. A. F. Morpurgo, C. M. Marcus, and D. B. Robinson, “Controlled fabrication of metallic electrodes with atomic separation,” Appl. Phys. Lett. 74, 2084–2086 (1999).
  6. L. Fan, M. C. Wu, H. C. Lee, and P. Grodzinski, “Dynamic beam switching of vertical-cavity surface-emitting lasers with integrated optical beam routers,” IEEE Photon. Technol. Lett. 9, 505–507 (1997).
  7. E. P. Burr, J. B. Song, A. J. Seeds, and C. C. Button, “28 ps recovery time in an InGaAsP/InGaAsP multiple-quantum-well saturable absorber employing carrier sweepout,” J. Appl. Phys. 90, 3566–3569 (2002).
  8. Y. Takagaki, E. Wiebicke, and K. H. Ploog, “Fabrication of GHz-range surface-acoustic-wave transducers on LiNbO3 using imprint technology,” Nanotechnology 13, 15–17 (2001).
  9. L. R. Dalton, “Rational design of organic electro-optic materials,” J. Phys. Condens. Matter 15, R897–R934 (2003).
  10. S. El Yumin, K. Komori, and S. Arai, “GaInAsP/InP semiconductor vertical GRIN-lens for semiconductor optical devices,” IEEE Photon. Technol. Lett. 6, 601–603 (1994).
  11. D. Dragoman and M. Dragoman, “Band-engineered semiconductor optical waveguides for integral transform implementation,” J. Appl. Phys. 85, 3409–3412 (1999).
  12. A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “Fractional transformations in optics,” Prog. Opt. 38, 263–342 (1998).
  13. A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995).
  14. Y. Zhang, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “New optical configurations for implementing Radon-Wigner display: matrix analysis approach,” Opt. Commun. 160, 292–300 (1999).
  15. Y. Zhang, B.-Y. Gu, B.-Z. Dong, and G.-Z. Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun. 166, 21–24 (1999).
  16. D. Mendlovic, R. G. Dorsch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, “Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner display,” Appl. Opt. 35, 3925–3929 (1996).
  17. D. Dragoman, M. Dragoman, and K.-H. Brenner, “Experimental demonstration of a continuously variant fractional Fourier transformer,” Appl. Opt. 38, 4985–4989 (1999).
  18. M. Fatih Erden, H. M. Ozaktas, A. Sahin, and D. Mendlovic, “Design of dynamically adjustable anamorphic fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997).
  19. G. I. Stegeman and D. G. Hall, “Modulated index structures,” J. Opt. Soc. Am. A 7, 1387–1398 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited