OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 34 — Dec. 1, 2003
  • pp: 6905–6909

Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes

Sergiy Patskovsky, Andrei V. Kabashin, Michel Meunier, and John H. T. Luong  »View Author Affiliations

Applied Optics, Vol. 42, Issue 34, pp. 6905-6909 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmon resonance (SPR) sensing on a silicon-based platform is considered. We have studied properties of SPR in a combined silicon-dielectric layer-gold film-sample medium structure and established conditions of the simultaneous excitation of two plasmon polariton modes that provide narrow and well-separated minima of the reflected intensity. It has been shown that the external mode over the gold-sample medium interface demonstrates a highly sensitive response to a change in the refractive index of the sample medium, whereas the internal mode over the dielectric-gold interface is almost insensitive to medium parameters. We propose that the internal mode can be used as an effective reference zero point for miniature and portable SPR-based systems designed for field and multichannel sensing.

© 2003 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: April 2, 2003
Revised Manuscript: September 2, 2003
Published: December 1, 2003

Sergiy Patskovsky, Andrei V. Kabashin, Michel Meunier, and John H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Appl. Opt. 42, 6905-6909 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
  2. P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).
  3. E. Kretschmann, H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. Teil A 23, 2135–2136 (1968).
  4. E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
  5. B. Liedberg, C. Nylander, I. Lundstrum, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
  6. B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
  7. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
  8. L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
  9. R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
  10. F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
  11. A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
  12. A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
  13. S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. Luong, “Surface plasmon resonance sensor with silicon-based prism coupling,” in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, eds., Proc. SPIE4958, 144–148 (2003).
  14. S. Patskovsky, A. V. Kabashin, M. Meunier, J. H. T. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644–1650 (2003).
  15. F. Abeles, T. Lopez-Rios, “Decoupled optical excitation of surface plasmons at the two surfaces of a thin film,” Opt. Commun. 11, 89–92 (1974).
  16. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
  17. G. G. Nenninger, P. Tobiska, J. Homola, S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151 (2001).
  18. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
  19. H. Raether, “Advances in research and development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), Vol. 9, pp. 145–261.
  20. R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface plasmon-polaritons,” J. Phys. F 17, 277–287 (1987).
  21. K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
  22. A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
  23. L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65 to 2.5-μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
  24. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited