OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 42, Iss. 4 — Feb. 1, 2003
  • pp: 736–744

SSR (spatially resolved refractometer): a null-seeking aberrometer

Robert H. Webb, C. Murray Penney, Jeffery Sobiech, P. Randall Staver, and Stephen A. Burns  »View Author Affiliations

Applied Optics, Vol. 42, Issue 4, pp. 736-744 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatially resolved refractometer is an aberrometer used to measure the wave-front aberrations of the human eye. In its original form and the new configuration that we report, it uses the patient’s perception in a psychophysical task to evaluate the wave-front errors at a variable number of loci (typically 40 or 160) across the cornea. This configuration includes pupil tracking and the ability to choose the measurement loci in software. An automated configuration that does not require patient input is also described.

© 2003 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.1010) Optical design and fabrication : Aberrations (global)
(220.4840) Optical design and fabrication : Testing

Original Manuscript: April 30, 2002
Revised Manuscript: August 21, 2002
Published: February 1, 2003

Robert H. Webb, C. Murray Penney, Jeffery Sobiech, P. Randall Staver, and Stephen A. Burns, "SSR (spatially resolved refractometer): a null-seeking aberrometer," Appl. Opt. 42, 736-744 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Webb, C. M. Penney, K. P. Thompson, “Measurement of ocular wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31, 3678–3686 (1992). [CrossRef] [PubMed]
  2. J. C. He, S. Marcos, R. H. Webb, S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998). [CrossRef]
  3. F. Daxecker, “Christoph Scheiner’s eye studies,” Doc. Ophthalmol. 81(1), 27–35 (1992). [CrossRef]
  4. A. Ivanoff, “About spherical aberration of the eye,” J. Opt. Soc. Am. 46, 901–904 (1956). [CrossRef] [PubMed]
  5. M. S. Smirnov, “Measurement of wave aberration in the human eye,” Biophysics (USSR) 6, 52–65 (1961).
  6. H. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977). [CrossRef] [PubMed]
  7. G. Walsh, W. Charman, H. Howland, “Objective technique for the determination of monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 1, 987–992 (1984). [CrossRef] [PubMed]
  8. J. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  9. R. Navarro, M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997). [CrossRef]
  10. W. N. Charman, “Wavefront aberration of the eye: a review,” Optom. Vision Sci. 68, 574–583 (1991). [CrossRef]
  11. P. M. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt. 6, 200–204 (2001). [CrossRef] [PubMed]
  12. D. A. Atchison, A. Bradley, L. N. Thibos, G. Smith, “Useful variations of the Badal optometer,” Optom. Vision Sci. 72, 279–284 (1995). [CrossRef]
  13. Gilway Technical Lamp, 55 Commerce Way, Woburn, mass. 01801, Megabright green GaN LED E903; www.gilway.com .
  14. Lumileds, Lighting, LLC, 370 West Trimble Rd., San Jose, Calif. 95131, LXHL-BW01 530 nm; www.lumileds.com .
  15. M. Toyoda, H. Takami, K. Araki, T. Aruga, “Characteristics measurement of avalanche photo-diode quadrant detector for dim light position sensing,” Rev. Laser Eng. 21, 392–398 (1993). [CrossRef]
  16. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration,” Optom. Vision Sci. 78, 152–156 (2001). [CrossRef]
  17. S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39, 4309–4323 (1999). [CrossRef]
  18. J. S. McLellan, S. Marcos, P. M. Prieto, S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature (London) 417, 174–176 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited