OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 42, Iss. 5 — Feb. 10, 2003
  • pp: 778–784

Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm

Atsushi Sato, Miodrag Scepanovic, and Raymond K. Kostuk  »View Author Affiliations


Applied Optics, Vol. 42, Issue 5, pp. 778-784 (2003)
http://dx.doi.org/10.1364/AO.42.000778


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss the use of holographic photopolymer materials for use as dense wavelength division multiplexing filters in the C-band of the optical communication spectrum. An edge-illuminated hologram configuration is described that effectively extends the grating length to achieve narrow band filters operating near 1550 nm in photopolymers that are 100–200-μm thick. This configuration enables the formation of apodized and cascaded filter systems. Rouard’s method is used to examine the properties of both apodization and cascaded gratings and indicates the potential for narrow spectral bandwidths (<0.2 nm) and high side-lobe suppression (<-30 dB). Initial experimental results with a commercially available photopolymer are provided that verify narrowband spectral-transmittance properties (<0.6 nm) and the ability to apodize the index profile. The primary limitation of the design is the absorption of existing photopolymer materials. Optimizing the polymer chemistry for filter design at 1550 nm may solve this problem.

© 2003 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4510) Fiber optics and optical communications : Optical communications
(090.0090) Holography : Holography

History
Original Manuscript: July 12, 2002
Published: February 10, 2003

Citation
Atsushi Sato, Miodrag Scepanovic, and Raymond K. Kostuk, "Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm," Appl. Opt. 42, 778-784 (2003)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-42-5-778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Castanon, O. Vassilieva, S. Choudhary, T. Hoshida, “Requirement of filter characteristics for 40 Gbit/s-based DWDM systems,” in Proc. 27th Eur. Conf. on Opt. Comm. (ECOC’01—Amsterdam) (IEEE, New York2001), pp. 60–61.
  2. N. Makeda, A. A. Hamdan, T. H. Chong, D. G. Dout, “Polarization independent, linear-tuned interference filter with constant transmission characteristics over 1530–1570-nm tuning range,” IEEE Photon. Technol. Lett. 9, 783–784 (1997).
  3. R. Ramaswami, K. N. Sivarajan, Optical Networks, A Practical Perspective, 2nd ed., (Morgan Kaufmann, Los Altos, Calif., 2002), Chap. 3.
  4. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  5. J. Qiao, F. Zhao, J. Liu, R. T. Chen, “Dispersion enhanced volume hologram for dense wavelength division demultiplexer,” IEEE Photon. Technol. Lett. 12, 1070–1072 (2000). [CrossRef]
  6. P. Boffi, M. C. Ubaldi, D. Piccinin, C. Frascolla, M. Martinelli, “1550 nm volume holography for optical communication devices,” IEEE Photon. Technol. Lett. 12, 1355–1357 (2000). [CrossRef]
  7. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2946 (1969). [CrossRef]
  8. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  9. D. C. O’Shea, Elements of Modern Optical Design, (Wiley Series in Pure and Applied Optics Wiley-Interscience, New York, 1985), pp. 232–234.
  10. J. N. Latta, R. V. Pole, “Design techniques for forming 488 nm holographic lenses with reconstruction at 633 nm,” Appl. Opt. 18, 2418–2421 (1979). [CrossRef] [PubMed]
  11. M. P. Rouard, “Etudes des propertietes optiques des lames metal-liques tres minces,” Ann. Phys. (Paris) ser. II 7, 291–384 (1937).
  12. L. A. Weller-Brophy, D. G. Hall, “Analysis of waveguide gratings: application of Rouard’s method,” J. Opt. Soc. Am. A 2, 863–871 (1985). [CrossRef]
  13. L. A. Weller-Brophy, D. G. Hall, “Analysis of waveguide gratings: a comparison of the results of Rouard’s method and coupled-wave theory,” J. Opt. Soc. Am. A 4, 60–65 (1987). [CrossRef]
  14. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996). [CrossRef]
  15. D. A. Waldman, H.-Y. S. Li, “Determination of low-transverse shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997). [CrossRef]
  16. D. A. Waldman, H.-Y. S. Li, E. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998). [CrossRef]
  17. T. Kubota, “Characteristics of thick hologram grating recorded in absorptive medium,” Opt. Acta 25, 1035–1053 (1978). [CrossRef]
  18. L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165–1178 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited