OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 11 — Apr. 10, 2004
  • pp: 2201–2208

Compact Liquid-Crystal-Polymer Fourier-Transform Spectrometer

Gerben Boer, Patrick Ruffieux, Toralf Scharf, Peter Seitz, and René Dändliker  »View Author Affiliations


Applied Optics, Vol. 43, Issue 11, pp. 2201-2208 (2004)
http://dx.doi.org/10.1364/AO.43.002201


View Full Text Article

Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the optical design and realization of a low-resolution liquid-crystal (LC) Fourier-transform spectrometer (FTS). This FTS is based on a polarization interferometer that has a Wollaston prism made of a LC material as a key component. It has a compact design, a good acceptance angle, and low temperature dependence and can be fabricated with cost-effective LC technology. Because the LC is polymerized, it is robust, and the temperature dependence is drastically reduced. The performance of a compact handheld version of the spectrometer and the characteristics (angular dependence, resolution, stray light, and temperature dependence) will be discussed.

© 2004 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(230.5440) Optical devices : Polarization-selective devices

Citation
Gerben Boer, Patrick Ruffieux, Toralf Scharf, Peter Seitz, and René Dändliker, "Compact Liquid-Crystal-Polymer Fourier-Transform Spectrometer," Appl. Opt. 43, 2201-2208 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-11-2201


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  2. J. Chamberlin, The Principle of Interferometric Spectroscopy (Wiley Interscience, Chichester, UK, 1979).
  3. O. Manzardo, P. Kipfer, and H. P. Herzig, “Dispersive compact Fourier transform spectrometer for the visible,” in Fourier Transform Spectroscopy: New Methodes and Applications (Optical Society of America, Washington, D.C., 1999), pp. 165–167.
  4. O. Manzardo, H. P. Herzig, C. R. Marxer, and N. F. de Rooij, “Miniaturized time-scanning Fourier transform spectrometer based on silicon technology,” Opt. Lett. 24, 1705–1707 (1999).
  5. S. D. Collins, R. L. Smith, C. González, K. P. Stewart, J. G. Hagopian, and J. M. Sirota, “Fourier-transform optical microsystems,” Opt. Lett. 24, 844–846 (1999).
  6. B. H. Billings, “Visual Fourier-transform spectroscopy with a single crystal plate,” J. Opt. Soc. Am. 65, 817–824 (1975).
  7. M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, “Single-pulse Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994).
  8. M. J. Padgett and A. R. Harvey, “A static Fourier-transform spectrometer based on Wollaston prisms,” Rev. Sci. Instrum. 66, 2807–2811 (1995).
  9. B. A. Patterson, M. Antoni, J. Courtial, A. J. Duncan, W. Sibbett, and M. J. Padgett, “An ultra-compact static Fourier-transform spectrometer based on a single birefringent component,” Opt. Commun. 130, 1–6 (1996).
  10. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35, 6698–6702 (1996).
  11. A. R. Harvey, M. Begbie, and M. J. Padgett, “Stationary Fourier transform spectrometer for use as a teaching tool,” Am. J. Phys. 62, 1033–1036 (1994).
  12. J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W. Sibbett, and M. J. Padgett, “Static Fourier-transform ultraviolet spectrometer for gas detection,” Appl. Opt. 36, 2813–2817 (1997).
  13. D. Steers, W. Sibbett, and M. J. Padgett, “Dual-purpose, compact spectrometer and fiber-coupled laser wavemeter based on a Wollaston prism,” Appl. Opt. 37, 5777–5781 (1998).
  14. F. J. Dunmore and L. M. Hanssen, “Miniature Fourier instrument for radiation thermometry,” AIP Conf. Proc. 430, 415–418 (1998).
  15. S. Prunet, B. Journet, and G. Fortunato, “Exact calculation of the optical path difference and description of a new birefringent interferometer,” Opt. Eng. 38, 983–990 (1999).
  16. T. Inoue, A. Hirai, K. Itoh, and Y. Ichioka, “Compact spectral imaging system using liquid crystal for fast measurement,” Opt. Rev. 1, 129–131 (1994).
  17. M. Stalder and P. Seitz, “Wollaston prism and use of it in a Fourier transform spectrometer,” European patent application EP 0 939 323 A1 (1 September 1998).
  18. G. Boer, T. Scharf, and R. Dändliker, “Compact static Fourier transform spectrometer with a large field of view based on liquid-crystal technology,” Appl. Opt. 41, 1400–1407 (2002).
  19. R. Dändliker, H. P. Herzig, O. Manzardo, T. Scharf, and G. Boer, “Micro-optics for spectroscopy,” in International Trends in Applied Optics (SPIE Press, Bellingham, Wash., 2002), Chap. 11, p. 219.
  20. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, UK, 1975), p. 508.
  21. C. C. Montarou and T. K. Gaylord, “Analysis and design of modified Wollaston prisms,” Appl. Opt. 33, 6604–6613 (1999).
  22. Breault Research Organization, “Wave optics,” Advanced System Analysis Program (ASAP) application notes (Breault Research Organization, Tuscon, Ariz., 2001).
  23. G. Boer and T. Scharf, “Polarization ray trace in twisted liquid crystal systems,” Mol. Cryst. Liq. Cryst. 375, 301–311 (2002).
  24. Manufactured by ASLUAB S.A. (Marin, Switzerland).
  25. Kaspar Cottier, “Fourier transform spectrometer system based on liquid crystal optical elements,” Diploma thesis (École Polytechnique Federal Lausanne, Lausanne, 2001).
  26. G. Boer, R. Dangel, K. Cottier, T. Scharf, and P. Seitz, “Illumination module for a reflection spectrometer,” European patent application EP 1 278 049 A1 (22 January 2003).
  27. O. Manzardo, Micro-Sized Fourier Spectrometers, Ph.D thesis (University of Neuchâtel, Neuchâtel, Switzerland, 2002), p. 24.
  28. G. Boer, “Polarization interferometer with reduced noise,” European patent application EP 1 278 050 A1 (22 January 2003).
  29. M. Hashimoto and S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31, 6096–6101 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited