OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 13 — May. 1, 2004
  • pp: 2670–2679

Mechanical characteristics of optical coatings prepared by various techniques: a comparative study

Jolanta E. Klemberg-Sapieha, Jörg Oberste-Berghaus, Ludvik Martinu, Richard Blacker, Ian Stevenson, George Sadkhin, Dale Morton, Scott McEldowney, Robert Klinger, Phil J. Martin, Nadia Court, Svetlana Dligatch, Mark Gross, and Roger P. Netterfield  »View Author Affiliations


Applied Optics, Vol. 43, Issue 13, pp. 2670-2679 (2004)
http://dx.doi.org/10.1364/AO.43.002670


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Good performance of optical coatings depends on the appropriate combination of optical and mechanical properties. Therefore, successful applications require good understanding of the relationship between optical microstructural and mechanical characteristics and film stability. In addition, there is a lack of standard mechanical tests that allow one to compare film properties measured in different laboratories. We give an overview of the methodology of mechanical measurements suitable for optical coatings; this includes depth-sensing indentation, scratch resistance, friction, abrasion and wear testing, and stress and adhesion evaluation. We used the techniques mentioned above in the same laboratory to systematically compare the mechanical behavior of frequently used high- and low-index materials, namely, TiO2, Ta2O5, and SiO2, prepared by different complementary techniques. They include ion-beam-assisted deposition by electron-beam evaporation, magnetron sputtering, dual-ion-beam sputtering, plasma-enhanced chemical-vapor deposition, and filtered cathodic arc deposition. The mechanical properties are correlated with the film microstructure that is inherently related to energetic conditions during film growth.

© 2004 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(310.0310) Thin films : Thin films
(310.6870) Thin films : Thin films, other properties

History
Original Manuscript: September 24, 2003
Revised Manuscript: February 17, 2004
Published: May 1, 2004

Citation
Jolanta E. Klemberg-Sapieha, Jörg Oberste-Berghaus, Ludvik Martinu, Richard Blacker, Ian Stevenson, George Sadkhin, Dale Morton, Scott McEldowney, Robert Klinger, Phil J. Martin, Nadia Court, Svetlana Dligatch, Mark Gross, and Roger P. Netterfield, "Mechanical characteristics of optical coatings prepared by various techniques: a comparative study," Appl. Opt. 43, 2670-2679 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-13-2670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Hoffman, Physics of Thin Films (Academic, New York, 1966), Vol. 3, p. 211.
  2. J. Valli, “A review of adhesion test methods for thin hard coatings,” J. Vac. Sci. Technol. A 4, 3007–3014 (1986). [CrossRef]
  3. M. R. Jacobson, ed., Selected Papers on Characterization of Optical Coatings, Vol. 63 of the SPIE Milestone Series (SPIE, Bellingham, Wash., 1992).
  4. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999).
  5. O. S. Heavens, “Adhesion of metal films produced by vacuum evaporation,” J. Phys. Radium 11, 355–359 (1950). [CrossRef]
  6. D. Bohling, M. Coda, R. Blacker, C. Burton, R. Gove, P. Murphy, I. Threlfall, F. Samson, “Abrasion resistant and optical thin film coatings for ophthalmic lenses,” in Proceedings of the 43rd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2000), pp. 222–229.
  7. R. Beckmann, K. D. Nauenberg, T. Naumann, U. Patz, G. Iehed, H. Hagedaru, “A new high-rate deposition process for scratch- and wipe-resistance coatings for optical and decorative plastic parts,” in Proceedings of the 44th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2001), pp. 288–294.
  8. L. Martinu, “Plasma deposition and testing of hard coatings on plastics,” in Plasma Treatments and Deposition of Polymers, R. d’Agostino, F. Fracassi, P. Favia, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 247–272. [CrossRef]
  9. J. E. Klemberg-Sapieha, S. Dahl, L. Martinu, “Nano- and micromechanical characterization of optical coatings fabricated by PECVD,” in Proceedings of the 44th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2000), pp. 234–238.
  10. L. Martinu, J. E. Klemberg-Sapieha, “Optical coatings on plastics,” in Optical Interference Coatings, N. Kaiser, H. Pulker, eds. (Springer-Verlag, Berlin, 2003), pp. 460–489.
  11. M.-A. Raymond, S. Larouche, O. Zabeida, L. Martinu, J. E. Klemberg-Sapieha, “Tribological properties of PECVD optical coatings,” in Proceedings of the 44th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2001), pp. 301–305.
  12. H. K. Pulker, “Film deposition methods,” in Optical Interference Coatings, N. Kaiser, H. K. Pulker, eds. (Springer-Verlag, Berlin, 2003), pp. 131–153. [CrossRef]
  13. R. Blacker, D. Siegfried, N. Van Lieu, D. Deakins, R. Ferguson, I. Kameyama, K. Coates, T. Erguder, C. Montcalm, in Proceedings of the 4th International Conference on Coatings on Glass (Institut Schicht- und Oberflächentechnik IST, Braunschweig, Germany, 2002), pp. 33–35.
  14. R. Blacker, D. Deakins, I. Kameyama, A. Dummer, B. Buchholtz, D. Siegfried, C. Montcalm, “Design and characterization of ion beam deposited gain flattening filters,” in Proceedings of the 45th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 232–237.
  15. L. Martinu, D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000). [CrossRef]
  16. P. J. Martin, A. Bendavid, “Review of the filtered arc process and materials deposition,” Thin Solid Films 394, 1–15 (2001). [CrossRef]
  17. P. J. Martin, “Optical thin film deposition by filtered cathodic arc techniques,” in Proceedings of the 45th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 270–273.
  18. O. Zabeida, J. E. Klemberg-Sapieha, L. Martinu, D. Morton, “Study of ion bombardment effects on optical films and polymer surfaces using a cold cathode ion source,” in Proceedings of the 42nd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 1999), pp. 267–272.
  19. B. J. Pond, C. T. Du, S. Talley, K. C. Carniglia, J. J. McNally, B. G. Charlton, “High-power 1.315 μm laser test of multilayer mirrors,” in Laser-Induced Damage in Optical Materials: 1993, J. Bennett, ed., Proc. SPIE2114, 335–344 (1994). [CrossRef]
  20. C. Montcalm, S. M. Lee, D. Burtner, A. Dummer, D. Siegfried, I. Wagner, M. Watanabe, “High-rate dual ion beam sputtering deposition technology for optical telecommunication filters,” in Proceedings of the 45th Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2002), pp. 245–249.
  21. J. E. Klemberg-Sapieha, O. M. Küttel, L. Martinu, M. R. Wertheimer, “Dual microwave/radio frequency plasma deposition of functional coatings,” Thin Solid Films 193/194, 965–972 (1990). [CrossRef]
  22. L. Martinu, M. Latrèche, V. Hajek, J. E. Klemberg-Sapieha, A. Argoitia, P. Beauchamp, “Search for high index PECVD optical coating materials: the case of titanium dioxide,” in Proceedings of the 43rd Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, Albuquerque, N. Mex., 2000), pp. 177–180.
  23. A. Bendavid, P. J. Martin, H. Takikawa, “Deposition and modification of titanium dioxide thin films by filtered arc deposition,” Thin Solid Films 360, 241–250 (2000). [CrossRef]
  24. M. Ohring, Materials Science of Thin Films (Academic, New York, 1992).
  25. International Organization for Standardization, “Metallic materials—instrumented indentation test for hardness and materials parameters—Part 1: Test method,” International Standard ISO 14577-1 (International Organization for Standardization, Geneva, Switzerland, 2002).
  26. W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992). [CrossRef]
  27. A. Amassian, P. Desjardins, L. Martinu, “Study of TiO2 film growth mechanism in low-pressure plasma by in situ real-time spectroscopic ellipsometry,” Thin Solid Films (to be published).
  28. B. Bhushan, ed., Handbook of Micro/Nano Tribology (CRC Press, Boca Raton, Fla., 1995).
  29. K. Holmberg, A. Matthews, eds., Coatings Tribology (Elsevier, Amsterdam, 1994).
  30. H. Szymanowski, O. Zabeida, J.-P. Masse, J. E. Klemberg-Sapieha, L. Martinu are preparing a manuscript to be called “Optical properties and microstructure of plasma deposited Ta2O5 Nb2O5 films.”
  31. J. M. E. Harper, in Plasma-Surface Interactions and Processing of Materials, O. Auciello, A. Gras-Marti, J. A. Valles-Abarca, D. L. Flamm, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1988).
  32. L. Martinu, J. E. Klemberg-Sapieha, O. M. Küttel, A. Raveh, M. R. Wertheimer, “Critical ion energy and ion flux in the growth of films by PECVD,” J. Vac. Sci. Technol. A 12, 1360–1364 (1994). [CrossRef]
  33. P. J. Kelly, R. D. Arnell, “Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system,” J. Vac. Sci. Technol. A 16, 2858–2869 (1998). [CrossRef]
  34. J. J. Cuomo, S. M. Rossnagel, M. R. Kaufman, eds., Handbook of Ion Beam Processing Technology (Noyes Publications, Park Ridge, Ill., 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited