OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2813–2823

Broadband, static wave-front generation: Na-Ag ion-exchange phase screens and telescope emulation

David J. Butler, Stefan Hippler, Sebastian Egner, Wenli Xu, and Jochen Bähr  »View Author Affiliations

Applied Optics, Vol. 43, Issue 14, pp. 2813-2823 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We test the statistical properties of static, atmospherelike wave fronts in glass that allow repeatable testing of astronomical adaptive optics instrumentation. The technology is mask-structured ion exchange (MSI) in glass and has significant advantages over other transmissive technologies. The screens are easy to clean, are insensitive to ambient temperature changes, and have high optical-to-near-infrared transmission. However, the effective coherence length (r0) on each of the fabricated screens is systematically too large or, equivalently, the fabricated aberrations are too weak. Despite this strong caveat, the screens appear to be quite useful: Long-exposure point-spread functions have realistic shapes, and power spectrum indices closely match those of the computer-generated wave fronts. Most significant, stacking screens with similar r0 values reduced r0 by the amount predicted by turbulence theory. The refractivity of MSI screens remains unmeasured. Finally, we present our design of an optical system that emulates the key characteristics of the Very Large Telescope, made to contain glass phase screens and to mimic an array of stars for multiconjugate adaptive optics system testing.

© 2004 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(160.2750) Materials : Glass and other amorphous materials
(220.3620) Optical design and fabrication : Lens system design

Original Manuscript: August 11, 2003
Revised Manuscript: February 10, 2004
Published: May 10, 2004

David J. Butler, Stefan Hippler, Sebastian Egner, Wenli Xu, and Jochen Bähr, "Broadband, static wave-front generation: Na-Ag ion-exchange phase screens and telescope emulation," Appl. Opt. 43, 2813-2823 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427 (1965). [CrossRef]
  2. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluids for very large Reynold’s numbers,” in Turbulence, Classic Papers on Statistical Theory, S. K. Fredlander, L. Topper, eds. (Wiley-Interscience, New York, 1961), pp. 151–155.
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1970).
  4. J. W. Hardy, J. E. Lefebvre, C. L. Loliopoulis, “Real-time atmospheric compensation,” J. Opt. Soc. Am. 67, 460–369 (1977). [CrossRef]
  5. R. Foy, A. Laberie, “Feasibility of adaptive optics with a laser probe,” Astron. Astrophys. 152, L29–L31 (1985).
  6. G. D. Love, “Wave-front correction and production of Zernike mode with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997). [CrossRef] [PubMed]
  7. D. J. Cho, S. T. Thurman, J. T. Donner, G. M. Morris, “Characteristics of a 128 × 128 liquid-crystal spatial light modulator for wave-front generation,” Opt. Lett. 23, 969–971 (1998). [CrossRef]
  8. T.-L. Kelly, D. F. Buscher, P. Clark, C. N. Dunlop, G. D. Love, R. M. Myers, R. M. Sharples, A. Zadrozny, “Dual-conjugate wavefront generation for adaptive optics,” Opt. Express 7, 368–374 (2000), http://www.opticsexpress.org . [CrossRef] [PubMed]
  9. M. A. A. Neil, M. J. Booth, T. Wilson, “Dynamic wave-front generation for the testing and optimization of optical systems,” Appl. Opt. 23, 1849–1851 (1998).
  10. A. Fuchs, J. P. Vernin, M. Tallon, “Laboratory simulation of a turbulent layer: optical and in situ characterisation,” Appl. Opt. 35, 1751–1755 (1996). [CrossRef] [PubMed]
  11. E. Masciadri, J. Vernin, “Optical technique for inner-scale measurement: possible astronomical applications,” Appl. Opt. 36, 1320–1327 (1997). [CrossRef] [PubMed]
  12. I. Sharf, K. Bell, D. Crampton, J. Fitzsimmons, G. Herriot, L. Jolissaint, B. Lee, H. Richardson, D. van der Kamp, J. P. Vernan, “Design of the dual-conjugate adaptive optics test-bed,” in Beyond Conventional Adaptive Optics, E. Vernet, R. Ragazzoni, S. Esposito, N. Hubin, eds. ESO Conference and Workshop Proceedings58, 383–389 (2001).
  13. R. G. Paxman, B. J. Thelen, J. J. Miller, “Optimal simulation of volume turbulence with phase screens,” in Propagation and Imaging through the Atmosphere III, M. C. Roggemann, R. G. Paxman, eds., Proc. SPIE3763, 2–10 (1999). [CrossRef]
  14. M. C. Roggemann, B. M. Welsh, D. Motera, T. A. Rhodarmer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995). [CrossRef] [PubMed]
  15. T. A. Rhoadarmer, J. R. P. Angel, “Low cost, broadband static phase plate for generating atmosphericlike turbulence,” Appl. Opt. 40, 2946–2955 (2001). [CrossRef]
  16. J. Bähr, K.-H. Brenner, S. Sinzinger, T. Spick, M. Testorf, “Index-distributed planar microlenses for three dimensional micro-optics fabricated by silver-sodium ion exchange in BGG 335 substrates,” Appl. Opt. 33, 5919–5924 (1994). [CrossRef] [PubMed]
  17. R.-P. Salmio, J. Saarinen, J. Turunen, A. Tervonen, “Graded-index diffractive structures fabricated by thermal ion exchange,” Appl. Opt. 36, 2048–2057 (1997). [CrossRef] [PubMed]
  18. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics XIV, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp. 281–376. [CrossRef]
  19. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  20. A. Ziad, R. Conan, A. Tokovinen, F. Martin, J. Borgnino, “From the grating scale monitor to the generalized seeing monitor,” Appl. Opt. 39, 5415–5425 (2000). [CrossRef]
  21. F. Martin, R. Conan, A. Tokovinin, A. Ziad, H. Trinquet, J. Borgnino, A. Agabi, M. Sarazin, “Optical parameters relevant for high angular resolution at Paranal from GSM instrument and surface layer contribution,” Am. Astron. Soc. 144, 39–44 (2000).
  22. A. Tokovinin, “From differential image motion to seeing,” Publ. Astron. Soc. Pac. 114, 1156–1166 (2002). [CrossRef]
  23. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolgomorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  24. A. Glindemann, R. G. Lane, J. C. Dainty, “Simulation of time-evolving speckle patterns using Kolmogorov statistics,” J. Mod. Opt. 40, 2381–2388 (1993). [CrossRef]
  25. In the present paper a pixel is defined as the smallest area with a single phase value.
  26. The sampling of r0 on the upper-altitude screen was originally chosen with scintillation tests in mind and to have a convenient round number of pixels on each axis. For the present paper the pertinent point is that r0 is not undersampled on either screen.
  27. J. Kolb, European Southern Observatory Garching bei München, Germany (personal communication, 2004).
  28. C. A. Friehe, J. C. La Rue, F. H. Champagne, C. H. Gibson, G. F. Dreyer, “Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer,” J. Opt. Soc. Am. 65, 1502–1511 (1975). [CrossRef]
  29. For comparison, we note that, because of differences in dry air at a given temperature in the same wavelength range, expected changes are very small (of the order of 1 × 10-6), with weak dependence on pressure.
  30. D. J. Butler, E. Marchetti, J. Bähr, W. Xu, S. Hippler, M. Kasper, R. Conan, “Phase screens for astronomical multi-conjugate adaptive optics: application to MAPS,” in Adaptive Optics Systems and Technologies II, P. L. Wizinowich, D. Bonaccini, eds., Proc. SPIE4839, 623–634 (2002). [CrossRef]
  31. Taken as 100% × [n(0.55 μm) - n(0.8 μm)]/[n(0.55 μm) - 1.0].
  32. Taken as 100% × [FWHM(0.633 μm) - FWHM(0.831 μm)]/FWHM(0.633 μm).
  33. R. Conan, “MAPS for MAD,” available from the author, European Southern Observatory, Garching bei München, Germany (personal communication, 2001).
  34. W. Xu, W. Seifert, “Optical glasses with high IR transmission,” in Specialized Optical Developments in Astronomy, E. Atad-Ettedgui, S. D’Odorico, eds., Proc. SPIE4842, 402–408 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited