OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 14 — May. 10, 2004
  • pp: 2868–2873

Microsurface Plasmon Resonance Biosensing Based on Gold-Nanoparticle Film

Xin Hong and Fu-Jen Kao  »View Author Affiliations

Applied Optics, Vol. 43, Issue 14, pp. 2868-2873 (2004)

View Full Text Article

Acrobat PDF (224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a gold-nanoparticle coated film to achieve highly spatially resolved biosensing that is based on localized surface-plasmon resonance. Unlike the planar gold film employed for conventional surface-plasmon resonance sensing, the gold-nanoparticle film relies exclusively on shifting of the peak extinction wavelength for detection of biointeraction and does not depend critically on the angle of incidence. These characteristics permit integration of surface-plasmon resonance with large-numerical-aperture optics to achieve biosensing with high sensitivity and spatial resolution as high as 25 μm.

© 2004 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.0180) Medical optics and biotechnology : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(300.1030) Spectroscopy : Absorption

Xin Hong and Fu-Jen Kao, "Microsurface Plasmon Resonance Biosensing Based on Gold-Nanoparticle Film," Appl. Opt. 43, 2868-2873 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Kretschman and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  2. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
  3. J. G. Gordon II and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci. 101, 499–506 (1980).
  4. B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors Actuators 4, 299–304 (1983).
  5. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors Actuators 3, 79–88 (1982).
  6. D. G. Myszka and L. R. Rich, “Implementing surface plasmon resonance biosensor in drug discovery,” Pharm. Sci. Technol. Today 3, 310–317 (2000).
  7. P. A. Lowe, T. J. H. Alwyn Clark, R. J. Davies, P. R. Edwards, T. Kinning, and D. Yeung, “New approaches for the analysis of molecular recognition using the IASYS evanescent wave biosensor,” J. Mol. Recogn. 11, 194–199 (1998).
  8. R. L. Rich and D. G. Myszka, “Survey of the 1999 surface plasmon resonance biosensor literature,” J. Mol. Recogn. 13, 388–407 (2000).
  9. R. L. Rich and D. G. Myszka, “Survey of the year 2000 commercial optical biosensor literature,” J. Mol. Recogn. 14, 273–294 (2001).
  10. P. Nilsson, B. Persson, M. Uhlen, and P. A. Nygren, “Real-time monitoring of DNA manipulations using biosensor technology,” Anal. Biochem. 224, 400–408 (1995).
  11. U. Jönsson, L. Fägerstam, B. Ivarsson, B. Johnsson, R. Karlsson, K. Lundh, S. Löfåas, B. Persson, H. Roos, I. Rönnberg, S. Sjölander, E. Stenberg, R. Ståahlberg, C. Urbaniczky, H. Őstlin, and M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” BioTechniques 11, 620–627 (1991).
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  13. A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).
  14. T. Akimoto, S. Sasaki, K. Ikebukuro, and I. Karube, “Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy,” Appl. Opt. 38, 4058–4064 (2000).
  15. G. Padeletti and P. Fermo, “How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period,” Appl. Phys. A 76, 515–525 (2003).
  16. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  17. V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, and V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17, 2183–2190 (1999).
  18. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B 53, 2425–2436 (1996).
  19. T. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B 104, 10,549–10,556 (2000).
  20. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343–2350 (2001).
  21. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
  22. H. Takei, M. Himmelhaus, and T. Okamoto, “Absorption spectrum of surface bound cap-shaped Au particles,” Opt. Lett. 27, 342–344 (2002).
  23. P. Török and F. J. Kao, Optical Imaging and Microscopy: Techniques and Advanced Systems (Springer-Verlag, Berlin, 2003).
  24. J. M. Polak and S. Van Noorden, Introduction to Immunocytochemistry, 2nd ed. (Bios Scientific, Oxford, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited