OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 16 — Jun. 1, 2004
  • pp: 3324–3328

Sellmeier dispersion for phase-matched terahertz generation in ZnGeP2

Pathik Kumbhakar, Takayoshi Kobayashi, and Gopal C. Bhar  »View Author Affiliations

Applied Optics, Vol. 43, Issue 16, pp. 3324-3328 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (89 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Sellmeier dispersion of zinc germanium diphosphide (ZnGeP2) crystal has been formulated to determine the phase-matching characteristics of the crystal for the generation of coherent tunable terahertz radiation by difference-frequency mixing techniques. The results computed with the formulated Sellmeier dispersion provide an excellent fit to the experimental data.

© 2004 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(260.2030) Physical optics : Dispersion
(260.3090) Physical optics : Infrared, far

Original Manuscript: December 2, 2003
Revised Manuscript: March 4, 2004
Published: June 1, 2004

Pathik Kumbhakar, Takayoshi Kobayashi, and Gopal C. Bhar, "Sellmeier dispersion for phase-matched terahertz generation in ZnGeP2," Appl. Opt. 43, 3324-3328 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  2. A. Bonavalet, M. Joffre, J.-L. Martin, A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995). [CrossRef]
  3. A. Nahata, A. S. Weling, T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  4. M. S. Tani, M. Herrmann, K. Sakai, “Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging,” Meas. Sci. Technol. 13, 1739–1745 (2002). [CrossRef]
  5. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8–12.4 μm,” Opt. Lett. 25, 841–843 (2000). [CrossRef]
  6. G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971). [CrossRef]
  7. G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972). [CrossRef]
  8. V. V. Apollonov, A. I. Gribenyukov, V. V. Korotkova, A. G. Suzdal’tsev, Yu. A. Shakir, “Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal,” Sov. J. Quantum Electron. 26, 469–470 (1996). [CrossRef]
  9. W. Shi, Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003). [CrossRef]
  10. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987). [CrossRef]
  11. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt. 15, 305–307 (1976). [CrossRef]
  12. The extraordinary index ne(λ) = no(λ) + Δn; Δn = 0.0397, which is the long-infrared birefringence, taken from Ref. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited