OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 17 — Jun. 10, 2004
  • pp: 3408–3414

Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations

Kirill V. Larin, Taner Akkin, Rinat O. Esenaliev, Massoud Motamedi, and Thomas E. Milner  »View Author Affiliations


Applied Optics, Vol. 43, Issue 17, pp. 3408-3414 (2004)
http://dx.doi.org/10.1364/AO.43.003408


View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical techniques may potentially be used for noninvasive glucose sensing. We investigated the application of phase-sensitive optical low-coherence reflectometry (PS-OLCR) to the measurement of analyte concentrations. The dependence of the PS-OLCR signal on the concentration of various analytes, including aqueous solutions of glucose, calcium chloride, magnesium chloride, sodium chloride, potassium chloride, potassium bicarbonate, urea, bovine serum albumin, and bovine globulin, were determined in clear and turbid media. Obtained results demonstrated (1) a high degree of sensitivity and accuracy of the phase measurements of analyte concentrations with PS-OLCR; (2) a concentration-dependent change in the phase-shift for glucose that is significantly greater than that of other analytes sampled over the same physiological range; and (3) a high submillimolar sensitivity of PS-OLCR for the measurement of glucose concentration. Further exploration of the application of PS-OLCR to the noninvasive, sensitive, and specific monitoring of glucose concentration seems warranted.

© 2004 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

History
Original Manuscript: November 17, 2003
Revised Manuscript: March 23, 2004
Published: June 10, 2004

Citation
Kirill V. Larin, Taner Akkin, Rinat O. Esenaliev, Massoud Motamedi, and Thomas E. Milner, "Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations," Appl. Opt. 43, 3408-3414 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-17-3408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  4. C. K. Hitzenberger, A. F. Fercher, “Differential phase contrast in optical coherence tomography,” Opt. Lett. 24, 622–624 (1999). [CrossRef]
  5. D. P. Davé, T. E. Milner, “Optical low-coherence reflectometer for differential phase measurement,” Opt. Lett. 25, 227–229 (2000). [CrossRef]
  6. M. Sticker, K. Hitzenberger, R. Leitgeb, A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26, 518–520 (2001). [CrossRef]
  7. T. Akkin, D. P. Dave, T. E. Milner, H. G. Rylander, “Interferometric fiber-based optical biosensor to measure ultra-small changes in refractive index,” in Optical Fibers and Sensors for Medical Applications II, I. Gannot, ed., Proc. SPIE4616, 9–13 (2002). [CrossRef]
  8. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, “Noninvasive monitoring of glucose concentration with optical coherent tomography,” Opt. Lett. 26, 992–994 (2001). [CrossRef]
  9. K. V. Larin, M. S. Eledrisi, M. Motamedi, R. O. Esenaliev, “Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects,” Diabetes Care 25, 2263–2267 (2002). [CrossRef] [PubMed]
  10. K. V. Larin, M. Motamedi, T. V. Ashitkov, R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003). [CrossRef] [PubMed]
  11. T. Akkin, D. P. Davé, J. Youn, S. A. Telenkov, H. G. Rylander, T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003). [CrossRef] [PubMed]
  12. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–13 (1997). [CrossRef]
  13. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  14. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  15. M. Bartlett, H. Jiang, “Measurement of particle size distribution in multilayered skin phantoms using polarized light spectroscopy,” Phys. Rev. E 65, 031906 (2002). [CrossRef]
  16. R. Bays, G. Wagnieres, D. Robert, J. F. Theumann, I. A. Vitkin, J. F. Savary, P. Monnier, H. van den Bergh, “Three-dimensional optical phantom and its application in photodynamic therapy,” Lasers Surg. Med. 21, 227–234 (1997). [CrossRef] [PubMed]
  17. A. Wax, C. H. Yang, R. R. Dasari, M. S. Feld, “Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering,” Appl. Opt. 40, 4222–4227 (2001). [CrossRef]
  18. D. Lide, Handbook of Chemistry and Physics, 82nd ed. (CRC Press, Boca Raton, Fla., 2001).
  19. M. B. Huglin, Light Scattering from Polymer Solutions (Academic, New York, 1972).
  20. A. Kratz, K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values,” N. Engl. J. Med. 339, 1063–1072 (1998). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited